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ALGORITHM DEVELOPMENT FOR MODELING AND ESTIMATION
PROBLEMS IN HUMAN EEG ANALYSIS

Abstract

by

Anatoly Zlotnik

The structure of human electroencephalographic (EEG) signals is inves-

tigated using computational methods with the objective of developing au-

tomatic algorithms for clinical applications. The EEG is examined globally

as a stochastic process with alpha-stable increments, and a novel parameter

estimation method is used to investigate its properties. The signal is also

examined locally as a smooth, deterministic dynamical system, and the per-

formance and applicability of methods for nonlinear feature estimation are

evaluated. The results are compared to standard linear and spectral meth-

ods. A set of inter-cranial recordings from epileptic patients is used to study

the local behavior of the EEG, and algorithms for detection and forecasting

of seizures are considered. In addition, a set of sleep-EEG recordings from

a study on neonatal development is examined. An algorithm for sleep-state

identification in neonates is presented, and the assessment of brain matura-

tion in neonates using the EEG is explored.
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Chapter 1

Introduction

The electroencephalogram (EEG) records the electrical activity of the brain,

and is ubiquitous in neurological research and clinical applications. Electrical

potential is measured between pairs of electrodes, which can be placed on

the scalp or surgically implanted to measure the EEG signal. It is known

that this electrical activity is caused by the firing of single neurons, while

electrode measurements reflect the combined activity of millions of cells in a

large-scale multi-unit network. The result is a signal with components that

vary greatly in amplitude, frequency spectrum, recurrence, and duration.

The structural complexity of this system presents issues regarding its

dynamics involving memory, chaos, periodicity, and scaling. Conventional

methods for time-series and dynamic systems analysis are based on assump-

tions of determinism or randomness, and linearity or nonlinearity, while the

EEG evades such classification. Clinicians consequently analyze the EEG vi-

sually, and such analysis remains an art practiced by experts, although much

research has been focused on developing computational methods to make cer-

tain examination faster or even automatic. The central theme of this work

is an investigation of EEG signal structure on different time-scales, since un-

derstanding this behavior is vital for the effective application of time-series

analysis methods to create consistent algorithms useful for clinical use.
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1.1 History of EEG Analysis

The measurement and analysis of electrical activity in the brain has a long

history beginning in the 19th century. The first recordings were made by

Vladimir Pravdich-Neminsky [109] in 1912 and the term “Elektroenkephalo-

gramm” was first used by Hans Berger [11], the discoverer of the human

EEG, in 1929. A detailed account of historical aspects of the EEG is given

in [94].

Great progress in the clinical interpretation of the EEG was made in the

next 30 years, after which interest shifted towards automatic analysis, focus-

ing largely on power spectrum estimation using the Fast Fourier Transform

and statistical signal analysis. Pioneering work was done by Hjörth [59], who

presented several metrics based on moments of the power spectral density

that could be computed in real time. The results of Elul [36] in examining

the Gaussianity of short EEG segments have been of special interest, and

Sugimoto [130] tested the normality and stationarity of EEG segments in

different sleep states. Most of the work in this area has focused on the adult

population.

The limitations of frequency and time-domain techniques quickly became

apparent. It is difficult to cite exact measures for many phenomena in the

EEG, such as spikes or sharp waves, let alone automate them. The EEG

is too complex a signal to be fully characterized by frequency analysis, and

advances in nonlinear time-series methods and computer power in the 80s

and 90s have caused a surge in computational EEG research.

1.2 Modern EEG Analysis

1.2.1 Methods

Established methods for computational analysis of the EEG are generally

classified as nonparametric or parametric. The former can involve amplitude,

interval, or period distributions, correlation functions, power spectrum, or

2



cross-spectrum functions. The latter involves AR or ARMA models, Kalman

filtering, or segmentation analysis. Other methods include mimetic analysis,

time-frequency analysis, and topographic analysis [94]. In general, the aim of

computational analysis is to quantify a specific characteristic of a single- or

multi-channel EEG. The process of mapping a time-series to a real number or

a vector is referred to as feature extraction, and the derived features can then

be used for qualitative characterization, automatic diagnostics, prediction

algorithms, and other analysis.

1.2.2 Applications

The applications of automatic EEG analysis include detecting abnormality

in short records, classifying abnormalities, and evaluating changes between

serial records or trends over long records. Any automatic algorithm must

make some decision based on diagnostics or features of the signal, which

requires heuristics such as neural networks or clustering. It is important

to choose the correct method for any given application. Research in EEG

analysis focuses both on such heuristics as well as identification of useful

signal features for specific problems. The focus of this work is on the problems

of sleep-state identification in the polysomnogram (PSG), or sleep-EEG [121],

and seizure onset detection [63].

1.2.3 Recent Developments

Much research has been done to determine if the EEG has elements of dy-

namical chaos, and whether attractor reconstruction methods can be used to

develop useful diagnostics. Some works [114, 115, 43, 42, 136, 106, 90, 122,

141, 142] have focused on the dimensionality of EEG signals obtained from

correlation integrals [53], with mixed results [56]. Largest Lyapunov expo-

nents of the EEG have also been compared between sleep states [115, 147]

and used in seizure prediction algorithms [64, 62]. Time-delay embedding

has also been used in algorithms to quantify nonlinearity [67, 100, 113], com-
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plexity [68], and similarity [80].

Wavelet and other time-frequency methods have been applied to several

problems [101, 25, 125, 129, 144]. The use of heuristics, both to extract

features and to make decisions, has been examined during sleep [45, 138,

76, 55] and for seizure detection [28, 41, 47, 75, 69]. Several segmentation

methods have been applied to the EEG [14, 18, 73], and some time-scaling

and fractal properties of EEG signals have been observed [81, 106] and noted

as a useful diagnostics [38, 2].

It is important to note here that fully automated clinical EEG diagnosis

is far from a reality. Computer methods are of great aid to researchers and

practitioners, however any result must still be subjectively interpreted by an

expert. Furthermore, no unified theory exists about the structure of the EEG

as a long-range process. The theory of self-organized criticality [7, 8], which

focuses on self-similarity properties, has been proposed [81]. In general, works

focusing on distributional properties of, or developing stochastic models for,

the EEG have been absent from the literature recently. This is the motivation

for much of the work presented here.

1.3 Research Focus

1.3.1 EEG structure

Both nonlinear and stochastic behaviors have been observed in the EEG and

used to discriminate states [43], though it is unclear which type of process

is dominant [100, 136]. The goals are then to identify and quantify both

the nonlinearity and randomness of the process. Nonlinearity assumes an

underlying chaotic attractor [72], which can be quantified through attractor

reconstruction by the parameters of dimensionality and Lyapunov exponents

[78]. Randomness can be described by an underlying stochastic process with

increments from one or more probability distributions [44].

In this work evidence is presented that the EEG is globally a stochastic
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process with correlated increments from a symmetric α-stable distribution.

Variation of the parameters of this distribution are examined over different

time-scales, as well as other properties, including measures of determinism,

chaoticity, and dimension. This sheds light on the appropriate analysis to

use given observations on any particular time-scale.

1.3.2 Sleep State Identification

A novel algorithm, also to appear in [108], is presented for sleep state identi-

fication in neonates based on the methods in [18, 73]. A number of standard

and novel feature extraction methods are used to create diagnostic sequences

from polysomnographic recordings. The diagnostic sequences are segmented

by nonparametric change-point detection and clustered to create minute-

by-minute scores of neonatal sleep-EEG records. Optimal combinations of

features are chosen based on the correspondence of resulting scores to those

provided by a clinical neurophysiologist. The goals and materials are similar

to [121].

1.3.3 Neurological Development in Neonates

Polysomnographic recordings of premature and full-term neonates are com-

pared using the above time-series analysis methods. The results of past

research on the neonatal polysomnogram [122, 120, 119] suggest that level of

brain maturation of the neonate can be assessed by analysis of sleep cycles

from the PSG. Sleep-cycle patterns automatically extracted from the PSG

are compared among pre-term and full-term groups, indicating a statistically

significant difference.

1.3.4 Seizure Onset Detection

EEG time-series from intra-cranial recordings of epileptic patients are exam-

ined to determine which features can be used to consistently detect seizure

onset. Epochs from pre-ictal, ictal (containing seizure activity), inter-ictal
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(between seizures), and post-ictal states are examined. Statistical tests are

formulated to verify hypotheses about the qualitative transitions in the signal

that occur during the onset of an epileptic seizure. The features that best

reflect these transitions are then used to establish appropriate onset criteria

and to develop an automatic algorithm for real-time seizure onset detection.

Clinical application of the algorithm is discussed, as well as the possibility of

predicting epileptic seizures.

1.3.5 EEG Data Sets

The data used for investigation includes a set of 27 intra-cranial 98-channel

EEG recordings sampled at 1000 Hz from a study of 8 epileptic patients.

This data set was provided by Dr. Mary Ann Werz of the Department of

Neurology at the Case School of Medicine. Another set used is a set of 116

14-channel sleep-EEG recordings sampled at 64 Hz from a study of neonatal

development. A comprehensive database with demographic information on

the neonates is available. The data and scoring were provided by Dr. Mark

Scher of the Department of Pediatrics at the Case School of Medicine.

1.4 Organization of Thesis

The thesis is structured to review the mathematical background for the meth-

ods used, to build a basis for their application, and eventually to describe

possible clinical implementations. The second chapter provides an overview

of stable distributions, and presents a set of novel algorithms realizing their

practical use. Stable fractional processes and their simulation are also dis-

cussed. In the third chapter spectral and nonlinear measures are reviewed,

as well as statistical testing for determinism, the process of attractor recon-

struction, and issues related to dynamical measures and their estimation.

The fourth chapter deals with segmentation, clustering, and state identi-

fication methods for analysis of physiological signals, and the problem of

6



statistical change-point estimation.

In the fifth chapter, the results from chapters two and three are used to

analyze the structure of the EEG alongside well-known examples of dynam-

ical systems and stochastic processes, respectively. The sixth chapter deals

with the process of sleep-state identification using polysomnographic record-

ings. The features described in chapter three are used as diagnostics, and the

methods described in chapter four are used to develop an automatic sleep-

state scoring algorithm. The application of the results to the assessment of

brain maturation in neonates is discussed. In the seventh chapter, qualitative

observations are stated about the process of epileptic seizure onset, and sta-

tistical hypothesis testing is used to verify these statements quantitatively. A

method for automatic seizure onset detection based on those observations is

presented. The eighth chapter summarizes results, and includes conclusions,

suggestions for clinical applications, and recommendations for future work.
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Chapter 2

Stable and Fractional Processes

The theory of stable distributions and Lévy processes began in the 1920s with

Paul Lévy and Alexander Khintchine, and was extended by Kolmogorov and

Gnedenko [51] in the 1940’s. The focus is on limit distributions of sums of

independent random variables (r.v.s), generalized by the class of α-stable

distributions. Such distributions do not have finite moments of order higher

than parameter α, and in general do not have finite variance or an explicit

form of the probability density function (p.d.f.). The stable distribution,

along with the notion of a fractional stochastic process, can be used to con-

struct models with a rich variety of variabilities and time-scaling properties.

Non-Gaussian stable distributions and fractional processes have found

applications in many fields. Notably, Mandelbrot [84, 85] and Fama [39] pio-

neered the use of fractional Brownian motions in the 1960s spurring interest

in stable and fractional processes. Recent advances in computing power have

allowed highly accurate approximation of stable densities [91, 33, 96, 97], and

rapid simulation of stable processes. Applications currently include telecom-

munications [49, 124], meteorology, physics, hydrology, biology, ecology, fi-

nance and economics [86, 66], and connections have been established to other

branches of mathematics. Reviews of Lévy processes and processes with long-

range correlations are given in [9], and [112], respectively.
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2.1 Stable Random Variables

Stable distributions are studied here with a perspective on efficient and effec-

tive application to analysis of real data sets in engineering and the sciences.

Important definitions, non-trivial properties, dependence on parameters, and

simulation are reviewed. A recently proposed method for numerical density

approximation is optimized and implemented to design accurate and rapid

algorithms for parameter estimation and goodness-of-fit tests using the MAT-

LAB software package [88]. This provides a complete set of computational

tools necessary for estimation and modeling with stable random variables.

2.1.1 Definitions

Several useful definitions and non-trivial properties [140, 117, 148] of stable

distributions are listed below.

Definition 2.1 (Stable r.v.) A random variable X is defined as stable if

for any sequence {Xi}n
i=1 of independent identically distributed (i.i.d.) copies

of X, there exist constants an and bn such that

n∑
i=1

Xi
d
= an + bnX, (2.1)

where “
d
=” denotes equality in distribution. The case where an = 0 for all n

is called strictly stable.

Definition 2.2 (Equivalent to Definition 2.1) A random variable X is

defined as stable if it has a domain of attraction, i.e. if there is a sequence

{Yi}n
i=1 of i.i.d. random variables and a sequence of pairs {an, bn} of real

numbers such that

1

bn

n∑
i=1

Yi + an
d⇒ X, (2.2)

where “
d⇒” denotes convergence in distribution.
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Definition 2.3 (Zolotarev’s ‘A’ Parametrization) A random variable X

is said to have a stable distribution if there are parameters 0 < α ≤ 2,

−1 ≤ β ≤ 1, σ ∈ R+, and µ ∈ R such that its characteristic function (c.f.)

has the form

φ(t) = E exp(itX) =





exp
{
−σα|t|α[1− iβsign(t) tan

πα

2
] + iµt

}
, α 6= 1,

exp

{
−σ|t|[1 + iβ

2

π
sign(t) ln |t|] + iµt

}
, α = 1.

(2.3)

In Definition 2.3, X ∼ Sα(σ, β, µ), where α, β, σ, and µ are the shape,

skewness, scale, and location parameters, respectively. Note that S2(σ, 0, µ),

S1/2(σ, 1, µ), and S1(σ, 0, µ) are the Gaussian, Lévy, and Cauchy distribu-

tions, respectively. The case where β = 0 and µ = 0 is called symmetric

α-stable (SαS). SαS r.v.s are strictly stable.

2.1.2 Properties

Property 2.4 (Existence of Moments) Given X ∼ Sα(σ, β, µ) with 0 <

α ≤ 2, then

E|X|p < ∞ for any 0 < p < α
E|X|p = ∞ for any p > α

(2.4)

Therefore the only stable distribution with finite variance is the Gaussian,

for which α = 2. Further references to cases where α < 1 will be omitted,

since the purpose here is to model measurements of real physical phenomena,

which always have finite expectation.

Property 2.5 (Summation) Given a sequence of r.v.s {Xi}n
i=1 with Xi ∼

Sα(σi, βi, µi), then
∑n

i=1 Xi ∼ Sα(σ, β, µ) has parameters

σ =

(
n∑

i=1

σα
i

)1/α

, β =

∑n
i=1 βiσ

α
i∑n

i=1 σα
i

, µ =

(
n∑

i=1

µi

)
(2.5)
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Property 2.6 (Scaling) Given a r.v. X ∼ Sα(σ, β, µ),

aX ∼ Sα(|a|σ, sign(a)β, aµ) if α 6= 1
aX ∼ S1(|a|σ, sign(a)β, aµ− 2

π
a ln |a|σβ) if α = 1

(2.6)

Corollary 2.7 Given a sequence of i.i.d. r.v.s {Xi}n
i=1 with X ∼ Sα(σ, β, µ),

then from properties 2.5 and 2.6 it follows that

(
∑n

i=1 Xi)
d
= n1/αX1 + µ(n− n1/α) if α 6= 1 and

(
∑n

i=1 Xi)
d
= nX1 + 2

π
σβ ln(n) if α = 1

(2.7)

Property 2.8 (Limiting Tail Behavior) Given a r.v. X ∼ Sα(σ, β, µ),

then {
limλ→∞ λαP{X > λ} = Cα

1+β
2

σα ,

limλ→∞ λαP{X < −λ} = Cα
1−β

2
σα ,

(2.8)

where

Cα =

{ 1−α
Γ(2−α) cos(πα/2)

if α 6= 1

2/π if α = 1
(2.9)

Therefore the limiting tail probability zα(x) of an SαS distribution decays

according to zα(x) ∝ 1/xα.

2.1.3 Dependence on Parameters

From definition 2.3, for a stable r.v. X ∼ Sα(σ, β, µ) the parameters, α,

β, σ, and µ (shape, skewness, scale, and location) completely specify the

distribution. The dependence on µ and σ is quite straightforward. The

dependence of the p.d.f and c.d.f. on α, and the power-law behavior of the

tails are illustrated in figure 2.1, along with the dependence of the p.d.f. on

β for values of α = 0.8 to α = 1.2 in the ‘A’ parametrization. Note the

power-law heavy-tail behavior due to α, as compared to the Gaussian case

(α = 2), as well as the offset of the mode caused by β.
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Figure 2.1: Dependence on Parameters

Another representation of stable distributions is the ‘M’ parametrization,

in which the stable distribution transitions from Gaussian to Cauchy to Levy

through continuous changes in the parameters α and β.

Definition 2.9 (Zolotarev’s ‘M’ Parametrization) Another parametriza-

tion of stable r.v. X ∼ S0
α(σ, β0, µ0) via the c.f. is

φ0(t) =





exp
{
−σα|t|α(1 + iβsign(t) tan

πα

2
[(σ|t|)1−α − 1]) + iµ0t

}
, α 6= 1,

exp

{
−σ|t|(1 + iβ

2

π
sign(t) ln(σ|t|) + iµ0t

}
, α = 1.

(2.10)

The location parameters µ0 of the ‘M’ parametrization and µ of the ‘A’

parametrization are related by µ = µ0 − βσ tan πα
2

for α 6= 1 and µ =

µ0 − βσ 2
π

ln(σ) for α = 1.

The ‘M’ parametrization is considered more suitable to numerical compu-
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tations because the mode always remains at the origin when µ0 = 0, unlike

that for the ‘A’ parametrization. The continuous dependence on α and β is

demonstrated in figure 2.2 below.
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Figure 2.2: Dependence on Parametrization: ‘A’ (left), and ‘M’ (right)

2.1.4 Generating Pseudo-Random Samples

The most widely used method for generating samples from stable distribu-

tions is the Chambers-Mallows-Stuck method [21]. It is regarded as the

fastest and most accurate [16], and reduces to the Box-Muller method for

generating Gaussian samples [65]. The algorithm is quite straightforward:

Algorithm 2.10 (Chambers-Mallows-Stuck Method) To generate

a r.v. X ∼ Sα(σ, β, µ),

1. Generate a uniform r.v. V on (−π/2, π/2) and an exponential r.v. W
with mean µ = 1

2. Compute the factors Cα,β = 1
α

arctan(β tan(πα
2

)) and
Dα,β,σ = σ[cos(arctan(β tan(πα

2
)))]−1/α

3. Y =





Dα,β,σ
sin(α(V +Cα,β))

(cos(V ))1/α (W−1 cos(V − α(V + Cα,β)))
(1−α)

α , α 6= 1

σ 2
π

[
( 2

π
+ βV ) tan(V )− β log

(
2
π

W cos(V )
2
π

+βV

)]
, α = 1

4. Evaluate X = Y + µ
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2.1.5 Approximation of Stable Densities

A major obstacle to the use of stable distributions for modeling real data is

the lack of an explicit form for the probability density function f(x), which

is central to most estimation and design techniques. One approach is to

approximate the density of Sα(σ, β, µ) by numerically evaluating the inverse

Fourier transform of the c.f. φ(t) over a finite interval:

f(x) =
1

2π
·
∫ ∞

−∞
e−itx · φ(t)dt ≈ 1

2π
·
∫ a

−a

e−itx · φ(t)dt (2.11)

Several methods based on the discrete Fourier transform (DFT) have been

presented in [33, 96] for strictly stable r.v.s. The method implemented here

is based on the midpoint integration rule of Menn and Rachev [91]:

Midpoint Rule (MPR):

∫ b

a

f(x)dx ≈ f(
b− a

2
) · (b− a) (2.12)

The construction is as follows:

Algorithm 2.11 (FFT-based Density Approximation) Given a c.f. φ(t),

the corresponding p.d.f. approximation f̂(x) is given by:

1. Define N = 2m ∈ N, a ∈ R+, and h = 2a
N

. Define a grid on [−a, a] by

{tj = −a + jh}N
j=0, with midpoints

{
t∗j = 1

2
(tj + tj+1)

}N−1

j=0
.

2. Define vector y ∈ CN by
{
yj = (−1)jφ(t∗j)

}N−1

j=0
and vector C ∈ CN by

{
Cj = ih(−1)je−i π

N
j
}N−1

j=0

3. Evaluate the DFT of y: Y = DFT (y)

4. For the grid
{
xk = −Nπ

2a
+ π

a
· k}N−1

k=0
, the values of the p.d.f. are given

by f̂(xk) = 1
2π

Ck · Yk

Lemma 2.12 (Proof of Algorithm 2.11) Using the notation in algorithm

2.11, it follows that

t∗j ·xk =

(
−a +

h

2
+

2a

N
j

) (
−Nπ

2a
+

π

a
k

)
=

Nπ

2
−πk− π

2
+

πk

N
−πj +

2πk

N
j
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Applying the midpoint rule (MPR),

∫ a

−a

e−itxk · φ(t)dt
MPR≈ 1

2π

N−1∑
j=0

φ(t∗j) · e−it∗j xk · (tj+1 − tj)

= 2a
N

N−1∑
j=0

φ(t∗j) · e−i(Nπ
2
−πk−π

2
+πk

N
−πj+ 2πk

N
j)

= 2a
N

e−i Nπ
2︸ ︷︷ ︸

=1

eiπk ei π
2︸︷︷︸

=1

e−i pi
N

k

N−1∑
j=0

eiπj︸︷︷︸
=(−1)j

φ(t∗j) · e−i 2πk
N

j

= ih(−1)ke−i pi
N

k · Yk = Ck · Yk

(2.13)

The c.f. φ(t) is sampled on the grid {tj}N−1
j=0 on the domain t ∈ [−a, a− 2a

N
],

so algorithm 2.11 will approximate f(x) on the grid {xj}N−1
j=0 on the domain

x ∈ [−c, c − π
a
], where c = Nπ/2a. This follows from elementary properties

of the Discrete Fourier Transform (see [35]). This concludes the proof.

Error analysis for the evaluation of standardized stable densities by algorithm

2.11 is discussed in [91]. Specifically, the errors εb(a,N), due to truncation of

the domain of integration, εc(a,N), due to applying numerical integration,

and εd(a,N), due to interpolation of the estimate, are addressed. These

errors depend on the integration bound a, and the number of grid points,

N . The factor εb will subsequently play a significant role, and is examined

in additional detail here.

Lemma 2.13 (Integration Domain Truncation Error) Given a toler-

ance φtol, a stable c.f. φX(t) for X ∼ Sα(σ, β, µ) satisfies |φX(t)| ≤ φtol for

all |t| ≥ a where a = 1
σ
(− log(φtol))

1/α. Furthermore, the truncation error

εb(a,N) for algorithm 2.11 applied to X is bounded by 1
πα

Γ
(

1
α
, aα

)
, where

Γ(a, z) is the upper-tail incomplete gamma function.

Proof: Observe that

|φX(t)| = | exp
{−σα|t|α + iσα|t|αβsign(t) tan πα

2

} | = e−σα|t|α (2.14)
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Solving for a in φtol = e−σα|t|α gives a = 1
σ
(− log(φtol))

1/α. Now, the error

εb(a,N) can be bounded as follows. Setting ω = tan(πα
2

),

|εb| = 1
2π

∣∣∣∣
∫ −a

−∞
φ(t) · e−itx dt +

∫ ∞

a

φ(t) · e−itx dt

∣∣∣∣
= 1

2π

∣∣∣∣
∫ −a

−∞
e−σα|t|αe−iσα(β|t|αω−|t|x) dt +

∫ ∞

a

e−σαtαeiσα(β|t|αω−|t|x) dt

∣∣∣∣
≤ 1

π

∫ ∞

a

e−σαtα |cos(σαβ|t|αω − |t|x)|︸ ︷︷ ︸
≤1

dt

≤ 1
π

∫ ∞

a

e−σαtα dt = 1
πα

Γ( 1
α
, aα) (≤ ea/π for α ≥ 1)

(2.15)

The final result is obtained from Mathematica [146].

An analytical examination of the error εc(a,N) due to discretization of the

integral is problematic, since the c.f. φX(t) oscillates for β 6= 0 in a nonlinear

manner. Such error analysis has not been performed, and remains a major

obstacle. Heuristically, it is clear that a greater value of N decreases εc(a,N).

The error εd(a,N) only arises if values of fX(x) are required for x that do

not coincide with the grid values. Spline interpolation can be used in that

case with negligible error. In addition, because the heavy-tail behavior of

stable distributions results in many ‘outliers’, the following series expansion,

derived in [12], is useful for computing extreme probabilities:

Lemma 2.14 (Bergström Expansion) For a standardized stable r.v. with

1 < α ≤ 2, the p.d.f fα,β(x) has an asymptotic series expansion for x →∞:

f(x) =
1

π

∞∑

k=1

c · ak(cx)−kα−1 (2.16)

where

b =
2

π
arctan(−β tan(πα/2)) (2.17)

c = cos(πb/2)1/α (2.18)

ak =
(−1)k−1

k
Γ(1 + kα) · sin

(
kπ

2
(α + b)

)
(2.19)
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2.1.6 Statistical Parameter Estimation

The estimation of parameters for samples with stable densities is a very well-

studied problem. An excellent review of statistical estimators for this purpose

can be found in [40]. One method that requires minimal computation is the

log-moments estimator of Zolotarev [148]:

Algorithm 2.15 (Zolotarev Estimator) Given a set of N i.i.d. samples

{Xi}N
i=1 from a centered r.v. Xi ∼ Sα(σ, β, 0),

1. Perform the transformations Ui = sign(Xi) and Vi = log|Xi|
2. Compute θ̂ = E[U ], τ̂ = E[V ], and ν̂ = 6

π2 V arV − 3
2
V arU + 1

3. Transform to obtain the estimates

α̂ = 1/
√

ν

β̂ = θ max(1, 1/(2
√

ν − 1))sign(1− 1/ν)

σ̂ =

{
exp{τ/

√
ν − C(1− 1/

√
ν)} if ν 6= 1

exp{τ + log cos(πθ/2)− log(π/2)} if ν = 1

The statistics θ̂ and τ̂ are consistent and unbiased.

Other procedures for statistical estimation of stable random variables ex-

ist, some of which are given in [95] and [40]. It is desirable to have maximum

precision in the estimate of parameters in many applications. By property

2.4, a minimum-variance estimator is not possible, but a minimum α-order

moment estimator is. Some further examination of Zolotarev’s estimator

follows.

Although the statistics θ̂ and τ̂ are unbiased, numerical simulations in-

dicate that the estimators α̂, σ̂ and β̂ are biased in an undetermined way.

Figure 2.3 shows shows the estimates by Zolotarev’s method for samples

of Xi ∼ S1.5(2, .4, 0) generated by the Chambers-Mallows-Stuck method of
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sizes N =1000, 2000, 4000, 8000, 16,000, 32,000, 64,000, and 128,000. Fig-

ure 2.3 shows shows the estimates by Zolotarev’s method for samples of

Xi ∼ S0.7(2, .4, 0).

1 2 4 8 16 32 64 128

1.3

1.4

1.5

1.6

1.7

1.8

al
ph

a 
es

t

Sample Size (Thousands

Zolotarev alpha est.

1 2 4 8 16 32 64 128
2

2.5

3

3.5

4
si

gm
a 

es
t

Sample Size (Thousands

Zolotarev sigma est.

1 2 4 8 16 32 64 128

0

0.2

0.4

0.6

0.8

be
ta

 e
st

Sample Size (Thousands

Zolotarev beta est.

Figure 2.3: Statistical estimation of Simulated α-stable Samples of
Xi ∼ S1.5(2, .4, 0): α̂ (left), σ̂ (center), β̂ (right)
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Figure 2.4: Statistical estimation of Simulated α-stable Samples of
Xi ∼ S.7(2, .4, 0): α̂ (left), σ̂ (center), β̂ (right)

Although there is a clear bias in the estimates, it occurs in a consistent

manner that depends on the parameters. Numerical simulation shows that

the estimate σ̂ is unbiased if σ = 1, and that σ̂1/α̂ provides a better estimate

of σ. An unbiased estimate of σ can be obtained iteratively as follows.

Algorithm 2.16 (Unbiased σ Estimation) A set of N i.i.d. samples

{Xi}N
i=1 from a centered r.v. Xi ∼ Sα(σ, β, 0) can be standardized and an

18



unbiased estimate of σ can be obtained as follows.

1. Define {X0
i }N

i=1 by X0
i = Xi and let σ0 = σ̂0 and α0 = α̂0where σ̂0 and

α̂0 are obtained by algorithm 2.15 applied to {X0
i }N

i=1.

2. For j = 0, 1, 2, . . ., re-scale the sample by Xj+1
i = Xj

i /σ
(1/αj)
j and obtain

σj+1 = σ̂j+1 and αj+1 = α̂j+1, using algorithm 2.15 for {Xj+1
i }N

i=1.

3. Repeat step 2 until σk − σk−1 is within some tolerance at step k; less
than 10 steps will achieve convergence

4. The final sample {Xk
i }N

i=1 will be standardized, with σk = 1. σ̂ for the
original sequence {Xi}N

i=1 is given by σ̂ = σ̃ =
∏k

i=0 σi

2.1.7 Iterative Numerical Estimation

In order to correct bias in a statistical estimator, a maximum likelihood

estimation (MLE) method for stable distributions has been suggested [98]

in the form of an inverse problem. The implementation presented here is

designed to automatically resolve convergence issues, which are related to

the accuracy issues discussed in section 2.1.5, and is therefore useful for

implementation in automatic algorithms.

Definition 2.17 (Log-Likelihood Function) For the p.d.f. f(x) of a cen-

tered stable r.v. X ∼ Sα(σ, β, 0) and i.i.d. samples {Xi}N
i=1, the log-likelihood

function (l.l.f.) is defined by:

L(α, σ, β) ,
N∑

i=1

log f(Xi; α, σ, β) (2.20)

The supremum of the l.l.f. over the parameter space yields the maximum

likelihood (ML) estimates (α∗, σ∗, β∗):

(α∗, σ∗, β∗) = supα,σ,βL(α, σ, β) (2.21)
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If the samples {Xi}N
i=1 have a stable distribution, the l.l.f. is convex and the

maximum can be found using numerical techniques. Because the gradient of

this function cannot be calculated, a black-box routine must be used. The

fminsearch function in the MATLAB Optimization Toolbox [88] implements

a Nelder-Mead simplex method suitable for such problems.

Algorithm 2.18 (Iterative Numerical MLE) Given data vector {Xi}N
i=1,

1. The sample {Xi}N
i=1 is standardized by division by a scaling factor σ̃

obtained using algorithm 2.16, and a starting point y0 = (α0, σ0, β0) is
obtained by algorithm 2.15, where σ0 = 1

2. Integration range a is obtained for φtol = 10−10 by

a = (− log(φtol))
(1/α0)

and the grid size N = 2m is selected by the user.

3. Global simplex minimization routine fminsearch.m is used with the
l.l.f. L(α, σ, β) as the objective function. At each evaluation, the den-

sity ˆf(x) is approximated on the domain [−c, c], where c = Nπ/2a,
by algorithm 2.11. The l.l.f. is evaluated by spline-interpolation at
Xi ∈ [−c/2, c/2] using f̂(x), and by the asymptotic Bergström expan-
sion given in algorithm 2.14 for Xi < −c/2 or Xi > c/2. The stan-
dardized sample is used in this step.

4. The optimization terminates at y∗ = (α∗, σ∗, β∗) when a user-set toler-
ance is reached, and the final estimate (α̂, σ̂, β̂) is given by (α∗, σ∗σ̃, β∗)

The optimization routine is very sensitive to the initial conditions, most im-

portantly because the initial σ estimate largely determines the integration

range a. Standardization by algorithm 2.16 eliminates this issue. Conver-

gence of the routine depends on reasonably accurate evaluation of the p.d.f.

using the same a throughout the procedure. The estimate may be refined by

running it again using its output as the initial estimate.
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2.1.8 Testing Goodness of Fit

Given a vector of samples {Xi}N
i=1 and an estimate of its distribution F (x),

it is important to test the goodness-of-fit (g.o.f.). Two powerful g.o.f. tests

are the Kolmogorov-Smirnov (KS) test and the Anderson-Darling (AD) test,

which are described in [30] and [27, 5], respectively. They are based on em-

pirical distribution function (e.d.f.) statistics that compare the distribution

of {F (Xi)}N
i=1 to the uniform distribution. The AD test is designed to give

more weight to the tails. These tests are implemented here to test the ac-

curacy of algorithm 2.18. The null hypothesis H0 is that the elements of a

sample {Xi}N
i=1 (assumed to be i.i.d.) from a r.v. X are distributed according

to X ∼ Sα(σ, β, 0). More on hypothesis testing is given in [30].

Algorithm 2.19 (Kolmogorov-Smirnov g.o.f. Test) Given a sample

{Xi}N
i=1, a c.d.f. F (x), and significance level αKS,

1. The e.d.f. statistic is calculated by D = maxi |i/N − F (Xi)|
2. The p-value is given by pKS(D) = K(D) where K(·) is the KS-distribution:

K(x) = 1 + 2
∞∑

j=1

(−1)j exp
(−2x2j2

)
(2.22)

3. If pKS > 1 − αKS the hypothesis that the sample is distributed with
c.d.f. F (x) is rejected at significance level 100(αKS)%.

Algorithm 2.20 (Anderson-Darling g.o.f. Test) Given a sample {Xi}N
i=1,

a c.d.f. F (x), and significance level αAD,

1. The e.d.f. statistic A2 is calculated:

A2 = −N − 1

N

N∑
i=1

(2i− 1) (log(F (Xi)) + log(1− F (Xn+i−1))) (2.23)
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2. The Anderson-Darling statistic Dα for a significance level α is given by
a table [27], as computation of the AD-distribution is problematic [87].

3. If A2 > Dα the hypothesis that the sample is distributed with c.d.f.
F (x) is rejected at significance level 100(αAD)%.

Algorithm 2.21 (Approximation of Stable c.d.f.) For a stable r.v.

X ∼ Sα(σ, β, 0) the c.d.f. approximation {F̂ (Xi) = P (X < Xi)}N
i=1 can be

obtained on a set of points {Xi}N
i=1, sorted in ascending order, by:

1. The density f̂(x) is computed according to 2.11 on x ∈ [−c, c], using
step 2 in 2.18 to insure accuracy

2. Using a cumulative vector integration routine, such as cumsimpsum.m

available at the MATLAB file exchange [88], numerically integrate f̂(xk)
for k = 2m−2 . . . 2m−1 + 2m−2 + 1 to obtain the vector {F̃j} for j =
1 . . . 2m−1 + 2 with values at {x̃j = xj+2m−2−2}.

3. If Xi ∈ [−c/2, c/2]∀i, interpolate the pair ({x̃j}, {F̃j}) at {Xi}N
i=1 to

obtain {Fi}N
i=1. This can be done with cubic-spline interpolation by

spline.m. Define F̂ (Xi) = Fi + Q where Q = P (X < X1) is the lower
tail probability, which can be obtained using property 2.8.

4. If values of Xi exist outside of [−c/2, c/2], define q1 = arg maxi{Xi <
−c/2} and q2 = arg mini{Xi > c/2}. Interpolate the pair ({x̃j, F̃j})
at {Xi}q2−1

i=q1+1 to obtain {Fi}q2−1
i=q1+1. Compute tail probabilities {Fi =

P (X < Xi)}q1
i=1 and {Fi = P (X > Xi)}N

i=q2 using property 2.8. Define
the c.d.f. estimate as

F̂ (Xi) =





Fi for i = 1 . . . q1
Fq1 + Fi for i = q1 + 1 . . . q2− 1
Fq1 + Fq2−1 + Fq2 − Fi for i = q2 . . . N

(2.24)

The values given by the Bergström expansion and the vector integration at

the upper tail combine seamlessly with negligible error for practical applica-

tion for values of α > 1.
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2.1.9 Accuracy and Time of Estimation

It has been demonstrated through simulation studies that maximum-likelihood

estimators are by far the most accurate of all available for stable distribu-

tions. However, previous numerical MLE algorithms require several minutes

to terminate, even for samples fewer than 50,000. An important factor is

the proper selection of the integration range a. Different choices of a result

in different values for f̂(x), the l.l.f. L(α, σ, β), and therefore the objective

function. The parameter a must remain constant throughout the algorithm

for the optimization to converge. The method for choosing a used here re-

sults in convergence of the algorithm for samples generated using 2.10 for

all permissible (α, σ, β) where α ≥ 1 using Zolotarev’s ‘M’ parametrization.

Furthermore, the samples pass goodness-of-fit tests as described above for

the estimated distributions. The algorithm also converges for samples where

α < 1, though its performance is less consistent in such cases. Reasonable

estimates can be obtained in cases where α > 0.5.

To give an impression of the accuracy, efficiency, consistency, and preci-

sion of the algorithm, simulations are performed for several values of α and

β involving the symmetric and skewed cases. The Chambers-Mallows-Stuck

method is used to generate 100 samples each of sizes N =1000, 2000, 4000,

8000, 16,000, as well as 32,000, 64000, and 128000 if α > 1, in Zolotarev’s

‘M’ parametrization. A grid size of N = 211 is used. Box-plots of the MLE

estimator values for increasing sample sizes are shown in for each simulation,

as well as Box-plots for Zolotarev’s estimator for comparison. The conver-
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gence of the variance of the estimates, the computation time on a 3 GHz

dual core workstation, and the mean p-values for KS-tests of the estimates

are illustrated. This is shown for X ∼ S1.7(2,−0.2, 0) below:
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Figure 2.5: MLE for Simulated α-stable Samples, X ∼ S1.7(2,−0.2, 0) : Box-
plots by Zolotarev’s method (top), Box-plots for MLE method (center), and
convergence of estimates (bottom left), computational cost (botom center),
mean p-values (complementary) for KS-test (bottom right)
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Note that for α = 1.7 in figure 2.5, the procedure takes under 8-10 seconds

for a sample of size N = 120, 000, and under 3-5 seconds if it is SαS. The

estimates are consistent and unbiased, and the samples pass the Kolmogorov-

Smirnov g.o.f. test formulated above with low p-values.
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The performance of the algorithm for α < 1 is demonstrated in figure

2.6. There is little bias in the results, which are acceptable and even pass

the KS-test. The p-values increase for larger samples due to the error in

approximating the p.d.f., and possibly due to bias in the Chambers-Mallows-

Stuck simulation method. In general, for real data that does in fact fit the

α-stable model, the MLE algorithm provides a rapid way to obtain consistent

and unbiased parameter estimates.

2.2 Stable Stochastic Processes

The class of fractional stochastic processes with stable increments includes

motions with a wide variety of scaling and volatility properties. Two exam-

ples are fractional Brownian motion and Levy processes, which have applica-

tions in many fields. While fractional Brownian motion always has a normal

distribution, Levy processes have heavy-tailed distributions. A review of the

Levy processes, representations, and applications in physical sciences can be

found in [9], and a review of fractional Brownian motion can be found on

page 25 of [112].

The stochastic processes considered here are linear and have the notable

property of self-similarity. Two cases of the α-stable self-similar stochastic

processes were applied to modeling traffic in broadband networks in [49],

and have potential for modeling applications in other fields, including biol-

ogy. The general concepts of long range correlations and time-scaling have

been examined extensively in time-series from the applied sciences. Relevant
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examples include [105, 81, 147] as well as pp. 286-392 of [112]

2.2.1 Self-Similar Processes

Self-Similarity is the fractal-like property of invariance over different space

and time-scales. A self-similar stochastic process keeps the same distribu-

tion on all time-scales. The processes considered here also have stationary

increments.

Definition 2.22 (H-sssi Process) A process X(t), t ∈ R, is self-similar

with index H if, for a > 0, X(at)
d
= aHX(t). The process is H-sssi if it is

self-similar with index H and has stationary increments.

The increments of H-sssi processes can display long-range dependence or

long memory properties, evidenced by a covariance function that decays to

zero slowly like a power function. H-sssi processes include fractional Brow-

nian motion (fBm), linear fractional stable motion (LFSM), log-fractional

stable motion (log-FSM), and Levy α-stable motion. These motions can be

represented as integrations of corresponding noises. Detailed derivations and

discussions of stable processes and their properties can be found in [117]. In

general, two parameters describe a linear fractional stable process, H, which

determines the time-scaling, and α, which characterizes the ‘volatility’ of the

independent increments used to generate process.
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2.2.2 Stable Noises and Motions

Two cases of particular interest are the LFSM and log-FSM, which are exten-

sions of fractional Brownian motion and Levy motion to the α-stable case,

respectively. Other extensions exist, however these forms are best suited to

simulation.

Definition 2.23 (Linear Fractional Stable Motion) The linear fractio-

nal stable motion (LFSM) is the stochastic process {Lα,H(a, b; t),−∞ < t <

∞} with

Lα,H(a, b; t) ,
∫ ∞

∞
fα,H(a, b; t, x)M(dx), (2.25)

where

fα,H(a, b; t, x) = a
(
((t− x)+)H−1/α − ((−x)+)H−1/α

)

+ b
(
((t− x)−)H−1/α − ((−x)−)H−1/α

) (2.26)

and where a, b ∈ R, |a|+ |b| > 0, 0 < α < 2, 0 < H < 1, H 6= 1/α, and

z+ ,
{

z, z ≥ 0
0, z < 0

, z− ,
{

0, z ≥ 0
−z, z < 0

Here M is an α-stable random measure on R with Lebesgue control measure

and skewness intensity β(x), −∞ < x < ∞, and β(·) = 0 if α = 1. The

LFSM is called balanced if a = b and anti-balanced if a = −b.

Definition 2.24 (Log-Fractional Stable Motion) The log-fractional sta-

ble motion (log-FSM) is an extension of the LFSM to the case where H =
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1/α. For 1 < α < 2, β(·) = β constant, and M as given in definition 2.23,

the log-FSM is given for −∞ < t < ∞ by

Λα,1/α(t) =

∫ ∞

−∞
(ln|t− x| − ln|x|) M(dx) (2.27)

Lemma 2.25 (Fractional Stable Noise) The linear fractional stable noise

(LFSN) is a stationary sequence {Yj} where

Yj(a, b, α, H) = Lα,H(a, b, ; j + 1)− Lα,H(a, b, ; j + 1) (2.28)

and the log-fractional stable noise (log-FSN) is a stationary sequence {Υj}

where

Υj(a, b, α, 1/α) = Λα,1/α(j + 1)− Λα,1/α(j) (2.29)

{Yj} or {Υj} is said to have long-range dependence when H > 1/α and

negative dependence when H < 1/α.

Note that long-range dependence is possible only when α > 1 since H ∈

(0, 1). This is explained conceptually by the fact that when α ≤ 1, the

measure M generates many large values causing the integrand in 2.23 to

diverge.

Another possibility not previously presented in the literature is to gener-

ate a noise that combines two scaling properties H1 and H2 using the same

α-stable measure M . Such a process can be defined as a Compound Linear

Fractional Stable Noise as follows.

Definition 2.26 (Compound Linear Fractional Stable Noise) A Com-

pound Linear Fractional Stable Noise (CLFSN) can be defined as in 2.23,
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with kernel f(·) given by

fα,H(a, b; t, x) = a
(
((t− x)+)H1−1/α − ((−x)+)H1−1/α

)

+ b
(
((t− x)−)H2−1/α − ((−x)−)H2−1/α

)
.

(2.30)

The compounding is said to be symmetric if H1−1/alpha = −(H2−1/alpha).

The kernels for one-sided, well-balanced, anti-balanced, and symmetric-

compound balanced linear fractional stable motions are shown below, for

H = .2 and α = 1.8, and d = H − 1/α. The significance of the compound

LFSN is explained in the next section.
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Figure 2.7: Kernels for one-sided (top right), well-balanced (top left), anti-
balanced (bottom left), and symmetric-compound well-balanced (bottom
right) linear fractional stable noise
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2.2.3 Simulation of Fractional Stable Noises

Simulation of fractional stable noise can be done by discretization of the

integral equation. This introduces “low-frequency” error due to truncation

of the limits of integration and “high-frequency” error due to summation

over a discrete grid. This integration is effectively a linear convolution of a

random vector with a kernel. The method for simulating fractional noise is

as follows:

Algorithm 2.27 (Simulation of Fractional Noise and Motion)

Fractional noise {Zj(M, f(τ, ·))}J
j=1 with kernel f(τ, x), truncated at N and

with discretization n (time-step 1/n), and driven by measure M is simulated

by

Zj(d, f(·)) =
Nn∑

u=−Nn

f
(u

n

)
εu−j, j = 1, . . . , J (2.31)

where {εj} is a sequence of i.i.d. α-stable random numbers. The correspond-

ing fractional motion {X(tj)}J
j=1 is approximated by

X
(
j

τ

m

)
=

(
J

τ

m

)−H
J∑

j=1

Zj, j = 1, . . . , J (2.32)

The above algorithm can be easily implemented by computing X̄ = K̄R̄,

where K̄ is the discretized kernel, and R̄ is a random matrix. Specifically, R̄

is formed from J columns from a non-symmetric Toeplitz matrix generated

using two vectors of pseudo-random α-stable numbers from algorithm 2.10.

Filtering, by moving average or by a Gaussian windowed method is suggested

to remove high frequency errors.
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The balanced LFSN with a = b = 1 is simulated here for H = 0.2,

T = 200, τ = 1, with memory N = 1000 and time-step n = 0.02. It is

driven by SαS noise with α = 1.8 and σ = 1. The process is then filtered

by a 2m-point moving average filter, which, in conjunction with the LFSN

kernel, creates a nonlinear temporal correlation structure driven by impulsive

α-stable random noise. Both signals and details are shown in figure 2.8.
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Figure 2.8: Balanced Linear Fractional Stable Noise (top right) and detail
(top right), and Filtered LFSN (bottom left) and detail (bottom right), H =
0.2, α = 1.8

Then, a balanced symmetric-compound LFSN, as defined in 2.26, with

the same parameters as the balanced LFSN above is simulated. It is similarly

filtered, and the signals and details are shown in figure 2.9.

The correlation and long-memory properties of the balanced LFSN and

CLFSN and their filtrations are illustrated in figure 2.10. Note that for the

filtered CLFSN process the autocovariance has a first zero-crossing for very
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large lag, indicating the presence of highly positively correlated long-range

memory.
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Figure 2.9: Balanced Compound Linear Fractional Stable Noise (top right)
and detail (top right), and Filtered LFSN (bottom left) and detail (bottom
right), H = 0.2, α = 1.8
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The multi-scaling property of the low-frequency and high-frequency cor-

relations in the compound process are due to the fact that the kernel is

generated by two different values of H. Also, notice that the autocorrelation

of the unfiltered signal appears similar to the kernel, and the filtering re-

moves this anomaly, which is due to the numerical method used to generate

the process.

2.3 Discussion and Future Work

In this chapter an algorithmic basis is developed for modeling with and es-

timation of random samples from stable distributions with high speed and

accuracy. This is done by minimizing the error in numerical evaluation of

the α-stable p.d.f. using the fast Fourier transform. The algorithms pre-

sented here can be used for simulation of random samples, and estimation

and testing of the parameters. Fractional stable noises and motions and their

simulation are also discussed, and the compound linear fractional stable noise

is introduced. These processes will serve as models in subsequent chapters,

where numerical estimation procedures are used to adapt them to physical

processes, specifically the EEG.

Further work in the area of simulation and estimation of stable fractional

processes and noises is required in order that they can be used as effective

models for real data. A comparison of accuracy and efficiency with respect to

other recent estimation techniques for α-stable random variables presented

in [15, 137, 89] is necessary. In addition, the performance and applicability of
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Fractional ARIMA and ARFIMA models needs to be investigated, as well as

techniques for parameter estimation for such models. More investigation into

the properties created by compounding scaling properties is also warranted.

The numerical methods used here may be extended to apply other prob-

abilistic and statistical models to real data, particularly those that involve

distributions with no explicit analytical probability density function. Exam-

ples of such models include the class of Smoothly-Truncated Lévy distribu-

tions [107] and fractional stable distributions [139], which arise in models of

anomalous diffusion in statistical physics.
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Chapter 3

Nonlinear Time-Series Methods

Nonlinear time-series analysis is an evolving field that has experienced many

major developments in the past decades while the assumptions of linearity

and stationarity underlying conventional time-series analysis were gradually

abandoned. Though the mathematics involved have become much more com-

plicated, simple nonlinear models can capture behaviors that could not be

observed in a linear framework. Unlike the traditional linear case, there is no

unified theory or conceptual framework for analysis of nonlinear time-series.

Most of the works in this area are dispersed throughout the literature, though

two notable collections of modern methods and ideas are [111] and [72]. The

former focuses on linear systems driven by a stochastic inputs, while the

latter assumes a deterministic nonlinear system.

The purpose in this chapter is to examine methods for feature extraction

from short time-series. One focus is to examine the time-series as a self-

similar random fractal in the sense of Hausdorff [24, 118], Mandelbrot [85],

or Hurst [52, 31, 71, 70, 104] and to estimate power-law scaling parameters,
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or otherwise analyze time-scaling [82, 105] or correlation [93, 131] properties.

Another approach is to assume in the sense of Takens the presence of an un-

derlying discrete [134, 50] or continuous [132, 4] dynamical system. Various

ways exist to characterize such systems from time-series data that generally

involve estimating optimal embedding parameters for the data [53, 46, 78, 74]

and ‘reconstructing’ the underlying attractor [79, 3]. A variety of measures

can then be estimated to quantify the ‘dimensionality’ [79, 133, 127], ‘deter-

minism’ [67, 22], ‘entropy’ [55], or ‘chaoticity’ [145, 19, 116] of the system.

These approaches are considered here in light of their utility and performance

for extracting information from short one-dimensional time series. The in-

tended application is algorithm development for estimation and detection

problems related to the EEG.

3.1 Spectral Analysis of Stochastic Signals

The traditional methods of time-series analysis examine the basic statistical

and spectral properties of a signal. The essential assumption is ergodicity, a

term originally from statistical mechanics and a subject of deep mathematical

study. Sufficient requirements are stationarity and linearity, in particular the

convergence of sample means and autocovariances to appropriate limits in a

mean square sense. A compilation of definitions, detailed derivations, and

some methods can be found in [110]. The relevant framework for spectral

analysis of short time-series is summarized below, and some estimators are

presented:
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3.1.1 Correlation and Spectral Density

Definition 3.1 (Wide-sense Stationarity) A stochastic process X(t) is

called wide-sense stationary (WSS) if its mean is constant and its autoco-

variance RX(t, t+τ) and autocorrelation function (a.c.f.) ρX(t, t+τ) depend

only on τ :

E[Xt] = µX var(X(t)) = σ2
X

cov[X(t)X(t + τ)] = RX(τ) ρX(τ) = RX(τ)/RX(0)
(3.1)

Definition 3.2 (Power Spectrum) The power spectrum (p.s.) SX(f) of

a WSS process X(t) is given by

SX(f) , lim
T→∞

E

{
1

2T
|X̂T (f)|2

}
, where X̂T (f) =

1√
2π

∫ T

−T

X(t)e−i2πft dt

(3.2)

Definition 3.3 (Power Spectral Density) The power spectral density

(p.s.d.), or normalized power spectrum sX(f)=SX(f)/σ2
X is related to the

autocorrelation ρ(τ) by

sX(f) =
1

2π

∫ ∞

−∞
ρX(τ)e−i2πfτ dτ (3.3)

When sX(f) exists, sX(f)df is interpreted as the average (over all realiza-

tions) of the proportion of total power in components of X(t) with frequencies

between f and f + df [110].
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Definition 3.4 (Periodogram) Given a series of observations {Xj}N
j=1, a

function called the periodogram IN(f) is defined for −1/2 ≤ f ≤ 1/2 by

IN(f) =
2

N

∣∣∣∣∣
N∑

k=1

Xke
−i2πfk

∣∣∣∣∣

2

(3.4)

If Xj = X(jτ) for a WSS process X(t) sampled at fs = 1/τ Hz, a con-

sistent and unbiased estimator {ŝj}N
j=1 of the p.s.d. of X(t) is given by

ŝj = IN((j − 1)/(2N))/σ2
X at frequencies fj = (j − 1)fs/(2N) (in Hz).

The periodogram can be rapidly evaluated using the FFT if N = 2m, and

can be ‘smoothed’ if the sequence {Xj}N
j=1 is split into multiple segments of

equal length M and the results for each IM are averaged.

3.1.2 Spectral Measures

Many measures, or features, exist for extracting information from time-series

through the power spectral density, and several are applied to the EEG in

[43]. The simplest is band power, or the proportion of the total energy in

components of the signal in frequency band f ∈ [f1, f2].

Definition 3.5 (Band Power) The band power of a signal in frequency

band f ∈ [f1, f2] is defined as

sX(f1, f2) ,
∫ f2

f1

sX(f) df (3.5)
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Definition 3.6 (Spectral Edge) The Es% spectral edge is defined as the

frequency below which Es% of the power is accumulated:

∫ EDGE

0

sX(f)df = Es

∫ ∞

0

sX(f)df (3.6)

Definition 3.7 (Spectral Moment) The nth spectral moment ηn
X is de-

fined as

ηn
X ,

∫ ∞

−∞
(2πf)nsX(f) df (3.7)

Lemma 3.8 (Time-Domain Analysis) The even spectral moments ηn
X for

n = 2, 4, . . . can be obtained in the time-domain by

ηn
X = −dnRX(τ)

dτn

∣∣∣∣
τ=0

= E

[
dn/2X(t)

dtn/2

]2

(3.8)

The spectral moments were used in [59] to define parameters that give a valid

description of an EEG signal provided that the signal has a symmetric p.d.f.

with only one maximum.

Definition 3.9 (Hjorth Parameters) The Hjorth parameters are:

Activity, A , σ2
X

Mobility, M , (η2
X)1/2

Complexity, C , (η4
X/η2

X − η2
X)1/2

(3.9)

Hjorth’s descriptors are notable for their low computational cost (due to

Lemma 3.8), however large errors may be introduced in the parameter C.

Another frequency-domain measure is spectral entropy, which quantifies the

dispersion of power throughout the frequency spectrum.
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Definition 3.10 (Spectral Entropy) The spectral entropy is defined as

SEN = −
∫ ∞

0

sX(f) log(sX(f)) df ≈ − 1

N

N∑
j=1

ŝX(f) log(ŝX(f)) (3.10)

Spectral analysis of time-series is convenient for its low computational cost,

making it suitable for practical applications, especially in real-time. The

power spectrum of linear fractional stable noise, described in section 2.2.2, is

shown in figure 3.1 as an example, with the 1-3 Hz frequency band and the

spectral edge marked.
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Power=25%

Figure 3.1: Power Spectrum of LFSN, H=0.2, α = 1.8, with 1-3 Hz band
power and spectral edge

3.2 Dimension and Self-Affinity Measures

One method for the analysis of time-series classifies the sampled signal as a

section or profile of a fractal structure. This approach is based on geometric

and topological principles from fractal theory, which is concerned with self-

affine sets defined by deterministic recurrence-relations on metric spaces.
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Self-similar structures are thus a subset of the self-affine class [134]. An

introduction to fractal theory can be found in [10]. For a known fractal

structure it is of interest to quantify how densely the set occupies the metric

space in which it resides, known as its fractal dimension D. It is also useful

to quantify how its structure is retained across different scales, a property

called self-affinity and measured by the Hurst parameter H, first examined by

Hurst in [61]. Thus fractal dimension is a local property, yet for a self-affine

structure it is retained globally, resulting in D + H = n + 1 for a self-affine

surface in n-dimensional space [52]. Furthermore for real, non-degenerate

processes, 0 ≤ H ≤ 1 and n ≤ D ≤ n + 1. Thus for a one-dimensional

fractional Brownian motion, D = 2 − H, however nothing is known about

the relationship between D and H in general [24]. Researchers in physiology

often use the relation D +H = 2 [31], while in reality a general physiological

signal is not globally self-affine. This results in the ‘crossover’ phenomena

discovered by Peng et. al. in [104]. Recently, stochastic models have been

proposed that separate D and H [52]. Several recent methods for estimating

the fractal dimension for time-series are reviewed here, as well as a method

for quantifying self-affinity.

3.2.1 Fractal Dimension

This section is concerned with computation of the fractal dimension of one-

dimensional objects, or profiles. Many approaches exist, including box-

dimension, Minkowski-Bouligand dimension, and intersection dimension [34].
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Several methods for estimating the fractal dimension of signals are given in

[118], and accuracy, consistency, biases, and computational cost are exam-

ined. Other methods are suggested in [24] and [58]. The focus here is on

estimation using the p.s.d., and the use of more precise methods based on the

variogram and curve length. The definition of fractal dimension used here is

the Minkowski-Bouligand dimension [34]:

Definition 3.11 (Fractal Dimension) The Minkowski cover A(ε) of a set

A in Rn is defined as A(ε) = {y : y ∈ Bε(x), x ∈ A}, where Bε(x) is a n-ball

of radius ε centered at x. Denoting by |E|2 the area of a region E ∈ R2, the

Minkowski-Bouligand dimension is given by

DMB = lim
ε→0

(
2− log |A(ε)|2

log ε

)
(3.11)

Lemma 3.12 Equation 3.11 suggests a power law where |A(ε)|2 ∼ ε2−D, so

that from log |A(ε)|2 = λ log(ε), one can obtain D ≈ 2− λ

This fact suggests the following technique presented in [58] for estimating

the fractal dimension D of a time-series, where the set A is taken as a given

ordered set in R.

Algorithm 3.13 (Fractal Dimension - Curve Length) To estimate the

fractal dimension of a time-series {X(j)}N
j=1 the curve length can be used as

an approximation for the Minkowski cover as follows.

1. Construct a set of k time-series {X1
k , X2

k , . . . , Xk
k} defined by

Xm
k = {X(m), X(m + k), X(m + 2k), . . . , X(m + b(N −m)/kc · k)}

43



2. Define the length of the curve Xm
k by

Lm(k) =
1

k

b(N−m)/kc∑
i=1

|X(m + ik)−X(m + (i− 1)k)|

3. Average over the Lm(k) to get L(k) = (1/k)
∑k

m=1 Lm(k)

4. Estimate the slope λ of log(L(k)) = λ log(k), and then D = 2− λ.

Another method to estimate D for a profile relies on the variogram.

Definition 3.14 (Variogram) The variogram is defined as

γ(τ) = E[(X(t)−X(t + τ))2] = 2(RX(0)−RX(τ)) (3.12)

Proposition 3.15 Let A(ε) be the Minkowski cover of a small section of

the curve X(t) ∈ R representing a realization of an ergodic stochastic pro-

cess. Then the expected curve-length estimate of the local Minkowski cover

is E[|A(ε)|2] ≈ E[X(t + ε)−X(t)]. The square of the expected area in R2 of

the local Minkowski cover is then

E[|A(ε)|2]2 ≈ E[(X(t + ε)−X(ε))2] = γ(ε) (3.13)

From 3.11, this suggests γ(ε) ≈ |A(ε)|22 ∝ ε2(2−D). It follows that finding the

slope λ of log(γ(ε)) = λ log(ε), the estimate D ≈ 2− λ/2. Refer to [24].

Proposition 3.15 provides a simple method for estimating the fractal dimen-

sion using the variogram:

Algorithm 3.16 (Fractal Dimension - Variogram) To estimate the frac-

tal dimension of a time-series {X(j)}N
j=1 using the variogram method,
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1. Compute the variogram γ(j)

2. Estimate the slope λ of log(γ(k)) = λ log(k), and then
D = 2− λ/2.

Lemma 3.17 For an autocovariance function RX(τ) ∝ |τ |λ as t → 0, the

power spectral density follows the law SX(f) ∝ |f |−(λ+1) as f →∞ [24].

Algorithm 3.18 (Fractal Dimension - Power Spectrum) To estimate

the fractal dimension of a time-series {X(j)}N
j=1 using the power spectrum,

1. Compute the power spectrum SX(f)

2. Estimate the slope λ of log(SX(f)) = λ log(f), and then
D = 2.5 + λ/2.

The use of the three methods discussed above is illustrated for estimating the

fractal dimension D for Brownian motion, approximated by the cumulative

sum of a white noise process.
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Figure 3.2: Fractal Dimension of Brownian Motion by curve length (left),
variogram (center), and periodogram (right) estimation
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Actual Curve Length Variogram Periodogram

Smooth 1 1.0000± 0.0001 1.0004± 0.0001 1.6025± 0.0003
Brownian 1.5 1.5004± 0.0085 1.5003± 0.0071 1.6030± 0.0003
Noise 2 1.9999± 0.0024 1.9999± 0.0020 2.5014± 0.0080

Table 3.1: Comparison of Fractal Dimension Methods

The means and standard deviations of the estimators for D of white

noise, Brownian motion, and a smooth curve (e.g. sinusoid on [0, 1]) using

each method are shown in table 3.1 for 100 trials using 10000 points.

The two methods based on the Minkowski-Bouligand dimension are con-

sistent and unbiased, while the periodogram method cannot distinguish be-

tween Brownian Motion and a straight line, and gives an unreasonable value

for white noise. Of these methods, the variogram method is the most ac-

curate and consistent, and will be used for the subsequent analysis in later

chapters.

3.2.2 Hurst Exponent

The Hurst exponent H is a measure of the self-affinity of a structure, which

is a generalization of self-similarity discussed in section 2.2.1. In this section,

the Hurst exponent of one-dimensional objects, or profiles is discussed. The

standard approach to evaluating H has been to estimate D and assume

global self-affinity to obtain H = 2 − D. One recently developed approach

for estimating H independent of D uses scaled windowed variance (SWV)

methods, which are reviewed in [20]. The most widely used method is de-

trended fluctuation analysis (DFA), presented in [105] and examined also in
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[70, 71].

Algorithm 3.19 (De-trended Fluctuation Analysis) To estimate the

Hurst parameter of a time-series {X(j)}N
j=1 by de-trended fluctuation analy-

sis,

1. For n = 2, 4, . . . , N/2, N , partition {X(j)}N
j=1 into non-overlapping

windows of size n. Remove the linear least-squares fit from each window
and define SD(n) as the standard deviation of the resulting time-series.

2. Detect the first linear region of the plot of log(SD(n)) vs. log(n). The
slope of the plot in this region is related to the Hurst parameter H.

In addition to self-affinity, the Hurst parameter H also reflects the presence

of long-range correlations in a time-series, which is the focus in [105]. In

general, H is much more difficult to estimate than D, especially for non-

Gaussian or impulsive signals, such as those discussed in chapter 2. The

exact relationship between the DFA and H is not known. Other estimators

are reviewed in [102], in particular the Whittle estimator.

3.3 Phase-Space Reconstruction

The time-series analysis methods discussed in the next two sections rely on

the fact that irregularity in a signal may be caused by deterministic non-

linearity as well as randomness. Long-range correlations may be present

because an underlying dynamical system is generating quasi-periodic oscilla-

tions. With this assumption, the time-series is a measurement of the output

of a differentiable dynamical system defined on an m-dimensional manifold.

A natural initial approach to testing for and quantifying the existence of a
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quasi-periodic oscillator is to study sequences sampled from one-dimensional

outputs of dynamical systems governed by known equations. Over the past

decades the advances in nonlinear theory along with increases in computing

power have resulted in methods for numerically estimating the dimension

[53] and Lyapunov exponents [145], which are measures of chaos, for known

dynamical systems. These methods have subsequently been applied to real

data that exhibit behavior suggesting the presence of nonlinear chaos. Be-

cause the correlation structure of many physiological signals appears to be

nonlinear, these and other nonlinear measures have been readily applied to

medical data.

Output measurements of the underlying attractor from real data consist

of one-dimensional time-series, so it is necessary to reconstruct the phase-

space of the attractor from these available observations. This is done by

time-delay embedding, or reconstruction.

Definition 3.20 (Delay Reconstruction) The delay reconstruction

{ ~Xm
τ (j)}N−(m−1)τ

j=1 from a series of observations {X(j)}N
j=1 is defined by

~Xm
τ (j) = {X(j), X(j + τ), X(j + 2τ), . . . , X(j + (m− 1)τ)} (3.14)

where m is the embedding dimension and τ is the embedding delay.

The choice of parameters m and τ is important for the attractor reconstruc-

tion, and as expected, these parameters interact. Before continuing, it is

useful to present two famous dynamical systems in R3 that are often used as

examples for delay reconstruction.
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Example 1 (Lorenz Attractor) The Lorenz attractor is defined by

ẋ = σ(y − x)
ẏ = −xz + ρx− y
ż = xy − βz

(3.15)

Example 2 (Rossler Attractor) The Rossler attractor is defined by

ẋ = −y − z
ẏ = x + ay
ż = b + z(x− c)

(3.16)
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Figure 3.3: Lorenz Attractor with (a, b, c) = (.2, .2, 5.7), t ∈ [0, 100] (left)
and Rossler Attractor for (σ, ρ, β) = (10, 28, 8/3), t ∈ [0, 500] (right)

A review of many widely used discrete and continuous dynamical systems

as well some of their properties can be found in [127].
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3.3.1 Reconstruction Time Delay

The criteria for selecting the reconstruction delay τ are thoroughly discussed

in [46]. The basic idea is to choose a delay such that the elements of each

state vector ~Xm
τ (j) are as independent as possible. Ideally, the elements of the

vectors should be linearly uncorrelated, and also share as little information

as possible. The objective is to reconstruct the attractor using a minimum

embedding dimension m and a delay τ such that the embedding vectors

contain the maximum possible information about the state of the attractor.

Thus the more sophisticated measures of entropy and mutual information

are introduced, which are discussed in the context of message transmission.

For a dynamical system, the ‘message’ is the value of a state variable, and

because attractors are ergodic with asymptotic distributions, the probability

of a certain ‘message’ at any given time converges to a limit. In the context of

a time-series, the information contained in neighboring points is the quantity

of interest.

Definition 3.21 (Information Entropy) Consider a set of possible mes-

sages S ≡ {sj}, each associated with a probability Ps:sj 7→ P (s = sj) that

a message s is received, with
∑

j Ps(sj) = 1. Then the information entropy

H(S) of the system is

H(S) ,
∑

j

Ps(sj) log

[
1

Ps(sj)

]
= −

∑
j

Ps(sj) log(Ps(sj)) (3.17)
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Furthermore, given two related systems Q and S, the conditional entropy is

H(Q| S) , −
∑

j,k

Psq(sj, qk) log

[
Psq(sj, qk)

Ps(sj)

]
= H(S,Q)−H(S) (3.18)

where

H(S,Q) , −
∑

j, k

Psq(sj, qk) log [Psq(sj, qk)] (3.19)

The entropy H(S) can be interpreted as the average quantity of information

about a system gained from a measurement of s. The conditional entropy

H(Q|S) can be considered as the average uncertainty in a measurement of

q given that s is known. Additionally, mutual information is explained more

directly as the amount of information that can be obtained about q given a

measurement of s.

Definition 3.22 (Mutual Information) The mutual information I(Q,S),

equivalent to I(S,Q), of two systems Q and S is defined as

I(Q, S) , H(Q)−H(Q|S) = H(Q) + H(S)−H(S,Q) (3.20)

Rigorous definitions and derivations of entropy and information in the con-

text of dynamical systems can be found in [46].

To choose an optimal reconstruction delay, the measures of mutual infor-

mation and autocovariance may be used. The time-delay τ is chosen as the

first zero-crossing or first minimum of either of these measures. The evalua-

tion of the optimal time-delay is illustrated in figure 3.4 for the Lorenz and

Rossler attractors from the first state variable using both methods.
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Figure 3.4: Independent Delay Coordinates for Rossler (left) and Lorenz
(right) Attractors using Mutual Information and Autocorrelation

The two metrics may yield different delay values. In the case of the Rossler

attractor, the mutual information is nearly invariant on the interval τ ∈

[1, 1.5], while a clear zero-crossing in the autocorrelation is evident. However

for the Lorenz attractor, there are no zero-crossings or clear local minima

of the autocorrelation function on the relevant domain, while the mutual

information has a clear first minimum. It appears that mutual information

is a superior metric to autocorrelation because it can reflect the nonlinear

behavior of an attractor. This is the same result found by Fraser [46] for

other attractors.

3.3.2 Embedding Dimension

The standard method for selecting an embedding dimension for a time-delay

reconstruction is that of false nearest neighbor (FNN) analysis, a technique

discussed in [74] and also in [72]. The idea is to choose a dimension for which

the temporal evolution of nearby embedding vectors does not diverge too
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dramatically. In addition, the dimension must not be so large to permit the

embedding vectors to contain redundant information, which may “confuse”

the algorithm.

Definition 3.23 (Nearest Neighbor) For a given delay embedding

{ ~Xm
τ (j)}N−(m−1)τ

j=1 , the nearest neighbor ~̃Xm
τ (j) to a state vector ~Xm

τ (j) in

the m-dimensional embedding space is a vector ~Xm
τ (k) such that

k = arg min
i
‖ ~Xm

τ (i)− ~Xm
τ (j)‖ (3.21)

Kennel and Abarbanel [74] give two tests for false nearest neighbors. The

first examines if increasing the dimension from m to m+1 causes a significant

increase in the distance between coordinates that are nearest neighbors in

Rm. The second compares the distance between those coordinates in Rm+1

to the size of the attractor.

Proposition 3.24 (False Nearest Neighbor Test) If ~̃Xm
τ (j) and ~Xm

τ (j)

are nearest neighbors, they are false nearest neighbors if

|X̃(j + mτ)−X(j + mτ)|
‖ ~̃Xm

τ (j)− ~Xm
τ (j)‖

> Rtol or
| ~̃Xm+1

τ (j)− ~Xm+1
τ (j)‖

σ
> Atol

(3.22)

where σ is the standard deviation of {X(j)}N
j=1

The tolerances Rtol = 10 and Atol = 2 are reasonable values. This test

can be applied to choose a minimum embedding dimension for which a suffi-

ciently low ratio of nearest neighbors are false. It involves finding the nearest
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neighbor for each state vector, and is computationally very intensive. The

proportion of false nearest neighbors for 10000 data points of the first state

variable sampled at τ = 0.01 is shown in figure 3.5 for the Rossler and Lorenz

systems for several reconstruction dimensions.
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Figure 3.5: Embedding Dimension for Rossler (left) and Lorenz (right) At-
tractors via False Nearest Neighbors

The choice of embedding dimension is a difficult theoretical matter. Tak-

ens’ theorem states that a dimension of m = 2D + 1 yields an embedding

of a compact manifold with dimension D. However, there are data sets [72]

from which the attractor may be reconstructed in spaces between D and 2D.

Thus unless the dimension of the state space of the underlying nonlinear dy-

namical system is known a priori for an observed data set, it is problematic

to choose a reconstruction dimension in a non-arbitrary way. In practice,

a reasonable value is 2D̂ + 1, where D̂ is the reconstruction dimension for

which the proportion of false nearest neighbors is near 2%.
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3.4 Phase-Space Measures

Section 3.3 summarized the basic process for attractor reconstruction from a

time-series. Assuming that the time-series is in fact an observation of a low-

dimensional nonlinear dynamical system, and that the state reconstruction

is a reasonable representation of the attractor in the sense of Takens’ theo-

rem, several useful measures can be extracted from this data to describe the

system. A natural first step is to define a metric to quantify the determinism

of the data and to test the validity of the model. The system can be further

described by its correlation dimension, a measure of its complexity. Another

useful measure is entropy, which quantifies how well the system retains infor-

mation. The Lyapunov exponents characterize how information is retained

or lost by the system by examining how evolution trajectories change due

to perturbations of the system state. The procedures for estimation of these

measures from time-series is reviewed here. Furthermore, an attempt is made

to develop algorithms for automatic evaluation of these measures from ex-

perimental data so as to minimize the need for human interpretation and to

make the results of such methods less subjective and more consistent.

3.4.1 Testing for Determinism

Given time-series data observed from a continuous signal, before initiating

some nonlinear analysis of the data it is important to test the hypothesis that

nonlinear dynamics are present in the signal at a level significant enough to

warrant examination. The basis for such a test is surrogate data analysis,
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which is discussed in [135].

Definition 3.25 (Surrogate Data Test) To test for a property P1 in a

time series {X(j)}N
j=1 using surrogate data:

1. The null hypothesis H0 is that the property P1 is absent from {X(j)}N
j=1

2. A set of M sequences
{{Yk(j)}N

j=1

}M

k=1
are generated, such that the

properties that guarantee consistency with H0 are shared with {X(j)}N
j=1.

A value of M = 30 is sufficient.

3. A measure Z of P1 is applied to the original data to get Z0 and to the
surrogates to obtain {Zk}M

k=1. If P1 is present, then E[Zk 6=0] should be
different from Z0.

4. A student t-test is used to test H0, i.e. E[Zk 6=0] = Z0

5. A result of H = 0 indicates that absence of P1 cannot be rejected, and
a result of H = 1 means that P1 is present.

To implement the test for determinism, surrogate time-series similar to

the original in distribution, autocorrelation, and spectral density but other-

wise random must be generated. A measure that quantifies determinism is

then applied to the original and the surrogates. If the difference in the out-

comes is statistically significant, then the hypothesis that the original data

is deterministic cannot be rejected.

Two outstanding issues are how, if possible, one can generate the appro-

priate surrogate data, and which measure should be used that will effectively

differentiate stochastic and deterministic data. These issues are discussed in

[77], where the conclusion is that the results of the surrogate data testing, on

simulated and real data sets, are dependent on the method being evaluated

and its parameters, the algorithm for generating the surrogate data, and the

type of the original data.
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Various solutions to address these issues are examined in [123], which aims

for the design of more robust surrogate data generation methods, iterative

or otherwise. In that work, an efficient algorithm for generating iteratively

refined surrogate data (IRSD) is presented, which preserves the autocorrela-

tion, distribution, and power spectrum of the original signal. This technique

preserves all linear stochastic properties in the data, but no non-linear or

deterministic properties.

Algorithm 3.26 (Iteratively Refined Surrogate Data) Given a time se-

ries {X(j)}N
j=1, a surrogate data set that preserves linear temporal correla-

tions and distribution can be generated by the following:

1. Evaluate the magnitude {S(j)}N
j=1 of the DFT of {X(j)}N

j=1

2. Let {C(j)}N
j=1 be the data set {X(j)}N

j=1 sorted in ascending order

3. Define {R0(j)}N
j=1 by a random re-arrangement of {X(j)}N

j=1

4. Let {Y (j)}N
j=1 be the phase of the DFT of {Ri(j)}N

j=1, and define
{V (j)}N

j=1 by V (j) = Y (j)S(j)

5. Compute the inverse DFT {Z(j)}N
j=1 of {V (j)}N

j=1

6. Compute {Ri+1(j)}N
j=1 by replacing the rank ordering of {Z(j)}N

j=1 with
{C(j)}N

j=1:
Ri+1(j) = C(rank(Z(j)))

7. Repeat steps 4 to 6 until
∑N

j=1(Ri+1(j)−Ri(j)) = 0

This heuristic converges in a finite number of steps to a limit {R∞(j)}N
j=1.

The distribution is preserved since the result is a rearrangement of {X(j)}N
j=1,

and the linear correlation structure is retained since the frequency spectrum
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{S(j)}N
j=1 is invariant. The surrogate data will therefore have similar conti-

nuity, smoothness, and statistical properties as the original signal, with none

of the nonlinear or deterministic aspects. More details may be found in [123].

As an example, 50000 points sampled at τ = .01 are taken from the

first state of the Lorenz system and used to generate a random surrogate.

Segments from both sequences are shown below:
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Surrogate Data (right)
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All linear statistical properties of the signal are preserved. Note that the

only difference in linear properties is the phase, as expected.

The above technique produces a signal with the same linear statistical

properties as the original without preserving any nonlinear features. The

surrogate data test is based on the idea that if a nonlinear feature is not

different statistically between the original and the surrogate, the hypothesis

that the original signal is dominated by a linear stochastic process cannot be

rejected. The remaining issue is what measure to use.

The assumption here is that the theory of stochastic models involving

nonlinear temporal relationships is not yet well enough developed for appli-

cation in these algorithms. Testing for nonlinearity in time-series sampled

from continuous physical processes should therefore be aimed to test for con-

tinuous deterministic dynamics. Any continuous physical process appears

smooth if it is sampled at a high enough rate, so what is being examined

must be more subtle than continuity, smoothness, or complexity. The mea-

sure used needs to quantify the variance of the relative temporal evolution

of trajectories in the phase space. Such invariance would indicate nonlinear

determinism, as opposed to the high variance in temporal evolutions that is

present in linear stochastic signals.

A simple approach to such a measure is presented in [67], which involves

a central tendency measure (CTM) that quantifies the variation in angle of

successive directional vectors in the phase-space trajectory. The use of this

measure with a surrogate data test provides a rapid, effective, and robust
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way to test for determinism.

Algorithm 3.27 (Central Tendency Measure) The central tendency mea-

sure (CTM) of a time-series {X(j)}N
j=1 is given by the following:

1. Reconstruct the phase space { ~Xm
τ (j)}N

j=1

2. Compute angles {R(j)}N−1
j=1 between successive vectors ~Xm

τ (j) where

R(j) =
~X(j + 1) · ~X(j)

| ~X(j + 1)|| ~X(j)|

3. The CTM is given by

CTM =
1

N − 2

N−2∑
j=1

√
(R(j + 2)−R(j + 1))2 + (R(j + 1)−R(j))2

(3.23)

Remark 3.28 (Second Order Difference Plot) A second order difference

plot (SODP) of a time-series of angles of directional vectors is a plot of

(R(j + 2)−R(j + 1)) vs. (R(j + 1)−R(n)). The CTM is a measure of the

dispersion of the SODP that is independent of the variance of the signal.

Note that if the CTM is used for a surrogate data test for determinism,

a result of E[Zk 6=0] < Z0 will also result in acceptance of H0, since the

surrogates appear less random than the original.

The difference between a time-series observation of the Lorenz system,

which is a continuous deterministic signal, and its surrogate, a stochastic

signal with the same linear statistical properties, is illustrated in figure 3.8,

using the same 50000 points:
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Alternately, for a linear stochastic signal, specifically the filtered balanced

compound linear fractional stable noise discussed in chapter 2, the results for

the original and surrogate are much more similar. Note that since the signal

has been smoothed by a moving average filter, so that its form is consistent

with observations of a continuous process.
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In figure 3.10, note that the CTM is actually greater for the original data

than the surrogate in this case, indicating that a stochastic process dominates

the signal.
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Observe that the mutual information of the original and surrogate signals

is far more similar for integrated LFSN than in the case of the Lorenz data.

The mutual information plots validate the results of the CTM-based method.

It is important to note that the CTM measure is a heuristic, and the

effects of linear correlations in the signal on this measure are not known. Also,

filtering, interpolation, and noise will affect the measure in undetermined

ways. The phase-space reconstruction procedure may also affect the outcome,

as well as the method used to generate the surrogate data. These issues are

typical of surrogate data analysis, as described in [77]. The authors of [67]

suggest that the test can be made more robust by replacing the student t-test
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by an empirical test for a change in magnitude in the CTM. The authors

suggest that the criterion SCTM = CTMsurr/CTMorig can be considered,

where CTMsurr is the CTM of the surrogates and CTMorig is the CTM of

the original. If S is significantly higher than 1, there are grounds on which

to reject the null hypothesis. That is, for a value of S > 2, a deterministic

model should be considered, values of 1.3 < S < 2 could go either way, and

values of S < 1.3 are inconclusive.

Another approach for detecting determinism, using nonlinear autoregres-

sive filtering (NAR) to estimate Lyapunov exponents is presented in [22].

3.4.2 Correlation Dimension

One measure of the complexity of a fractal structure on a manifold in Rn is

the correlation dimension. The connection to time-series analysis is that the

temporal evolution of a signal, under proper transformation, can represent a

path on a manifold in Rn that is defined either by a deterministic law or as

a random walk. The complexity of this manifold is rigorously defined by the

box-counting dimension D, given by covering the state-space in which the

attractor lies by hypercubes of edge length ε, and counting the proportion of

cubes containing a piece of the attractor as ε → 0. The correlation dimen-

sion gives a more convenient method to define and compute an estimate of

complexity given an optimal phase-space reconstruction for the attractor as

defined in section 3.3.

The correlation dimension was first defined as a measure of the complex-
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ity of a chaotic attractor in [53], and is commonly referred to as D2. The

measure is derived from the correlation integral, which is the distribution of

the Euclidean distance between coordinates in the phase-space { ~Xm
τ (j)}∞j=1.

Furthermore, it well-known that D2 is related to the box-counting dimension.

Further reading on the correlation dimension and the related computational

issues can be found in [79, 133, 127].

Definition 3.29 (Correlation Integral) The correlation integral in em-

bedding dimension m is

Cm(r) , lim
N→∞

1

N2

N∑
i=1

N∑
j=1

θ(r − ‖ ~Xm
τ (j)− ~Xm

τ (i)‖) ≡
∫ r

0

ddr′c(~r′) (3.24)

Definition 3.30 (Correlation Dimension) It it well-known that Cm(r)

behaves according to a power law for small r, and the correlation dimension

D2 is defined by the relation Cm(r) ∝ rD2.

Remark 3.31 (Theiler Window) A correction was proposed by Theiler

in [134] to mitigate the effects of local autocorrelation on the global value

of Cm(r) for small values of r. Coordinate vectors within W points of one

another are to be eliminated from the integral calculation:

Cm(r) , lim
N→∞

2

(N + 1−W )(N −W )

N∑
j=W

N−W∑
i=1

θ(r − ‖ ~Xm
τ (j)− ~Xm

τ (i + j)‖)

(3.25)
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Algorithm 3.32 (Correlation Dimension) Given a phase-space embed-

ding { ~Xm
τ (j)}N−(m−1)τ

j=1 of a time-series {X(j)}N
j=1, the correlation dimension

estimate D2 can be obtained by the following:

1. The correlation integral {Cm
k = Cm(rk)}K

k=1 is computed for an expo-
nentially spaced set of values {rk}K

k=1, with, for instance, K = 300.

2. The two-point derivative approximation of the sequence log(Cm
k ) is used

to select the longest section of the plot log(Cm
k ) vs. log(rk) for which

the slope is statistically invariant, defined by k1 and k2. The algorithm
used for automatic statistical segmentation of sequences is discussed in
chapter 4.

3. Linear regression is used to fit a line to the plot log(Cm
k (r)) vs. log(r).

The slope of this line gives the estimate D̂2

This algorithm is applied to the Lorenz attractor data used previously

to demonstrate the automatic implementation of the correlation dimension

calculation. The Lorenz attractor is notable because its correlation integral

fits the power-law model very well. 20000 points of the first state of the

Lorenz attractor sampled at dt = 0.01 are examined. The value of τ =

16, the first minimum of mutual information, is used for embedding delay,

and W = 65, the first minimum of autocorrelation, is used as the Theiler

correction. The results are shown in figure 3.11. The algorithm clearly

detects the proper linear region in the correlation integral plot. The result

of the method is D̂2 = 2.04, which differs slightly from the result of 2.05

obtained in [53] due to the Theiler correction and to proper selection of the

regression region.
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It is important to note that the correlation dimension is highly sensitive

to noise in the signal and linear correlations in the signal. The correlation

integral measures the distribution of magnitude changes in the attractor, and

is an essentially probabilistic measure. Therefore in the presence of random

noise, the correlation dimension may reflect the properties of the noise rather

than any determinism.

3.4.3 Kolmogorov Entropy

The Kolmogorov entropy is a measure of how the system retains information.

This measure was applied to physiological signals in [43], along with other

nonlinear measures to extract information that could not be obtained using

linear techniques. An approximation to the Kolmogorov entropy using the

measure D2 was suggested by the authors of [53]. This approximation is

referred to as K2-entropy, for which a rigorous definition involves a very
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sophisticated topological formulation. It suffices to say that the measure

quantifies the average increase in entropy, or randomness, of a process on

a compact manifold in Rn due to temporal evolution of the phase-space

trajectories. The formulation of K2 as an estimate of Kolmogorov entropy

is intuitive as a heuristic in addition to being mathematically well-justified.

The difficulty of its objective application is, as in the case of correlation

dimension, a consequence of implementation issues.

Definition 3.33 (K2 (Kolmogorov) Entropy) The Kolmogorov Entropy

estimate K2 is given by

K2(r) = log

[
Cm(r)

Cm+1(r)

]
(3.26)

for a large value of m, such as 20 or 30.

The outstanding issue is finding a region of r for which the values of K2

are statistically invariant.

−1 0 1 2 3 4

−14

−12

−10

−8

−6

−4

−2

0

log(r)

C
(r)

Correlation Integrals, m=19 and m=20

20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

k

K2

K2 Entropy Plot and Plateau, K2 = 0.18101

m=19
m=20

Figure 3.12: Correlation Dimension of Lorenz attractor for m=19 and m=20
(left) and Plateau Identification for Kolmogorov Entropy (right)

67



The technique is similar to algorithm 3.32, for which the detection algo-

rithm will be described in the subsequent chapter. The algorithm is applied

to 20000 points of the first state of the Lorenz attractor sampled at dt = 0.01,

and the values of τ = 16 and W = 65 are again used.

This technique automatically computes the required correlation integrals,

entropy sequence, and detects the plateau on which the result is invariant.

The value of K2 entropy obtained for the Lorenz data is K2 = 0.1810. Again,

the Lorenz system is notable for the rapid convergence of its correlation

integral to a power law, so the method requires testing on diverse signals.

3.4.4 Lyapunov Exponents

Another nonlinear measure that has been applied to physiological signals is

the largest Lyapunov exponent. The Lyapunov spectrum of a dynamical sys-

tem quantifies the sensitivity to perturbation of the system by evaluating the

divergence of trajectories given a small perturbation in the initial conditions.

Two approaches to computing the Lyapunov spectrum of a chaotic attractor

were presented in [145] and [19], and the approach to extracting this measure

from short time-series is found in [116]. Two notable applications to phys-

iological signals are [55] and [43]. The meaning of numerical measures for

time-series generated by solving nonlinear systems is straightforward, while

it is not so clear when the time-series is a random process.

Definition 3.34 (Largest Lyapunov Exponent) Let ~X0(t) denote the

initial distance between two nearby coordinates in the phase-space of an at-
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tractor, and by ~X(s) the distance between them after an evolution in time of

s− t. Then the largest Lyapunov exponent L1 of the attractor is computed by

L1 =
1

tm − t0

m∑

k=1

log
~X(tk)

~X0(tk−1)
(3.27)

The techniques for actual implementation of this method require sophisti-

cated construction, and the results depend on the technique and parameters.

In addition, the interpretation of the method applied to random time-series

is not well-defined.

3.5 Discussion and Future Work

The fields of fractal and nonlinear time-series analysis encompass a wide array

of methods for extracting information from indeterminate data. However, the

results of such methods require substantial interpretation and are difficult to

automate for the analysis of a large number of time-series segments. In

this chapter, recent methods for statistical characterization of the dominant

structure of a time-series were discussed. The significance and estimation

of scaling, complexity, dimensionality, memory, and chaotic properties are

examined. Most notably, an attempt is made to automate the interpretation

of nuances in the application of these methods, with a focus on algorithm

development for hierarchical analysis of large data sets.

Future work in this area must involve the testing and adaptation of the

phase-space based methods for application to differently structured signals.

Also, the estimation of fractal dimension and the Hurst parameter in the
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presence of non-stationarity is an area of active current research. Though

power-law scaling can be verified easily in simulated data, the behavior of

physical systems is much more complex. The methods discussed above can

be integrated and augmented to characterize richer behaviors and extract the

maximum amount of information from measurement data.

70



Chapter 4

State Detection and
Identification in Physiological

Signals

The previous chapters focused on the extraction of diverse forms of informa-

tion, referred to as features, from time-series data. The estimation of specific

parameters, tests for choosing a proper qualitative model, and quantification

of some absolute and relative properties were reviewed. This chapter intro-

duces a framework for using those methods for automatic state detection and

identification problems related to physiology and biomedicine. The chosen

methodology and validation techniques are based on a broad review of meth-

ods in the literature. Certain algorithms described here are also applied to

automate the computation of certain measures introduced in chapter 3.

A central premise in this chapter is that the features extracted from mea-

surements of a physiological system can be highly variable in any given state.

Therefore, discrimination among different states is problematic using features

of only one epoch of an observed time-series, even though those features may
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have statistically significant differences between the states in general. In or-

der to overcome this difficulty, one can look a-posteriori for transitions in the

features of a time-series. These transitions will then separate the time-series

into segments, with invariant properties, for which one can assume that the

system remains in one state. This process is referred to as segmentation.

Separate states can thus be clearly detected and identified, and their proper-

ties can be evaluated. The process of grouping segments of a time-series with

similar properties to correspond to one of a set of states is called clustering.

The problem of state transition detection can be simplified to the es-

timation of the most likely transition points, referred to as change-points,

in the mean of a diagnostic sequence derived from a time-series of system

observations. This is accomplished in this chapter using an algorithm for

non-parametric statistical change-point detection based on a variant of the

Kolmogorov-Smirnov statistic. That algorithm and standard algorithms for

data partitioning are then applied to the problem of time-series segmentation

and clustering. The use of this technique for state discovery is also discussed.

4.1 Review of Detection and Identification

Methodology for Physiological Signals

The general state detection and identification problem in computational

biomedicine can be formulated as follows.

Definition 4.1 (State Detection and Identification Problem) Consi-

der a physiological system in a clinical setting with two or more well-defined
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and qualitatively observable/identifiable pathological or regular states. Given

sampled observations of measurable physiological signals from that system,

develop an algorithmic method that automatically identifies and detects the

clinical states.

The formulation here is intentionally vague, because such problems may

involve a-posteriori, real-time, or predictive requirements, and could require

the discovery of clinically unobservable states. Solutions are developed so

that the output on training data corresponds to clinical identifications for

that data. The diverse methods used to address such problems are reviewed

below.

A first and very important step is, given a time-series of measurements

and state classifications, to identify features of the data that exhibit statisti-

cally significant differences among states. A comparison of features based on

different qualitative models is necessary to rigorously validate the relevance

of chosen measures, and support clinically meaningful results. A straightfor-

ward way to do this is to separate the time-series into segments corresponding

to clinical states, extract features, and compare the results from the diagnos-

tic groups using analysis of variance (ANOVA). This analysis is used in [43]

to identify features that are statistically significant for separation of sleep

states. The notion of statistical significance of chosen features is mentioned

in [90] with regards to seizure detection, with emphasis on the caveat that

measures must also be medically significant.

73



Once features are chosen, they are applied to time-series to identify phys-

iological states. This can be done using neural networks, as done for sleep-

state identification [54, 55], or for detecting seizure onset [125]. Such methods

determine optimal linear subspaces that divide the feature space into regions

corresponding to each state. Other methods involve quantification of similar-

ity between epochs and some training epoch [80], or dynamical entrainment

of a feature at critical groups of electrode sites [62]. Heuristics and genetic

algorithms are also used [28, 126].

Because the data in question is a time-series, temporal factors are impor-

tant. Therefore robust identification requires the ability to segment time-

series data into stationary or invariant epochs, and identify statistically sig-

nificant temporal change-points in the features. One method employs a-

posteriori change-point identification by iterative optimization using a model-

based cost function [14]. A very robust and versatile approach involves non-

parametric statistical methods [18]. Such methods are applied to sleep anal-

ysis in [73]. Time-frequency transforms can be used for segmentation as well,

as in [25].

4.2 Change-Point Detection

Change-Point detection refers to the identification of significant changes in

the properties of a time-series. This is accomplished by identifying statisti-

cally significant changes in the mean of a diagnostic sequence derived from

the time-series. This section concerns the non-parametric statistical change-
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point detection methods of Brodsky [17] and their implementation for phys-

iological signals following [18, 73].

4.2.1 A-Posteriori Change Point Problem

Definition 4.2 (Piecewise Stationary Random Sequence) Consider a

piecewise constant function f(·) defined on the interval [0, 1] by

f(x) =
K∑

k=1

akΘ(x− bk) where Θ(x) =

{
1 for x ≥ 0
0 for x < 0

is the heaviside function, ak ∈ R and bk ∈ [0, 1]. Then a piecewise sta-

tionary random sequence {X(j)}N
j=1 is defined by X(j) = f(j/N) + ξ(j),

where {ξ(j)}N
j=1 is a sequence of zero-mean random variables. The points

{j∗(k)}K
k=1 are the change-points of the sequence, defined by j∗(k) = bbkNc.

In definition 4.2, the sequence {X(j)}N
j=1 is a random vector generated by

a known f(·) and by the distribution of a known r.v. ξ such that {X(j) −

f(j/N)}N
j=1

d
= ξ, where “

d
=” denotes equality in distribution. The detection

of change-points is the inverse problem, where f(·) is unknown and needs to

be estimated from a realization of the random sequence {X(j)}N
j=1.

Regarding the sequence {ξ(j)}N
j=1, it is assumed that it satisfies the mixing

condition in [103], i.e. independence of time, has a finite moment generating

function in some neighborhood of the origin, and there exists a limit

lim
n→∞

1

n
E




(
n∑

j=1

ξ(j)

)2

 = σ2 < ∞. (4.1)
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Observe that if {ξ(j)}N
j=1 are i.i.d., then σ2 = V ar(ξ).

Definition 4.3 (Change-Point Detection Problem) Assume that

{X(j)}N
j=1 is a piecewise stationary sequence as in definition 4.2. Then pro-

vided that one or more change-points are present, the sequence of change-

points {j∗(k)}K
k=1 is to be estimated. Further, the piecewise constant func-

tion f(·) that best corresponds to {X(j)}N
j=1 is to be recovered by forming a

sequence {f̂(j)}N
j=1 from {X(j)}N

j=1 and {j∗(k)}K
k=1 such that f(j/N) = f̂(j).

The solution developed by Brodsky [17] and others to this problem requires

lengthy and complex mathematical derivations. However, the resulting tech-

nique, based on the Brownian bridge, makes sense heuristically as well.

Definition 4.4 (Brownian Bridge) Define by W the Wiener process, or

the Brownian motion process, on the space of continuous functions on [0, 1],

and with the well-known properties E[Wt] = 0 and E[WsWt] = s if s ≤ t.

Then, the Brownian bridge WO is defined by WO
t = Wt − tW1, with

E[WO
t ] = 0

E[WO
s WO

t ] = s(1− t) if s ≤ t,
E[(WO

t −WO
s )2] = (t− s)(1− (t− s)) if s ≤ t

(4.2)

Observe that WO
t is ‘tied-down’ such that WO

0 = WO
1 = 0 with probability 1.

Furthermore, the Brownian bridge has the notable property that

FKS(C) , P

(
sup

t
|WO

t | ≤ C

)
= 1 + 2

∞∑

k=1

(−1)kexp{−2k2C2} (4.3)

where C > 0 and FKS(·) denotes the Kolmogorov-Smirnov distribution.
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Further information on the properties of the Brownian bridge and other

stochastic processes can be found in [13]. The presence of a change-point

in a sequence is detected within the framework of hypothesis testing based

on this model.

4.2.2 Statistical Methods

Proposition 4.5 (Test for Presence of Change-Points) For a random

sequence {X(j)}N
j=1 as in definition 4.2, the null (homogeneity) hypothesis H0

is that the sequence is stationary with a constant mean, and has no change-

points. Consider the family of statistics

YN(j, δ) =

[(
1− j

N

)
j

N

]δ
[

1

j

j∑

k=1

X(k)− 1

N − j

N∑

k=j+1

X(k)

]
(4.4)

where δ ∈ [0, 1] and j ∈ [1, N − 1]. It is clear that if E[X] = m1 for j ≤ j∗

and E[X] = m2 6= m1 for j ≥ j∗, then arg maxj |YN(j, δ)| = j∗. Then for

some given threshold C (to be defined later), if |YN(j, δ)| ≥ C then H0 is

rejected and j∗ is selected as a change-point of {X(j)}N
j=1.

Equation 4.4 is a variant of the Kolmogorov-Smirnov statistic, used for test-

ing the equality of distributions of two samples. At each point j in the time

series, YN(j, δ) is the difference in means of {X(k)}j
k=1 and {X(k)}N

k=j+1,

weighted by a function [(1− j/N)(j/N)]δ.

Proposition 4.6 (Convergence to Brownian Bridge) It can be

shown [17, 26] using functional limit theorems for random sequences [103]
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that the statistic
√

N · YN(bNtc, 1) converges, with N → ∞, as a random

process to σWO
t . Here WO is the Brownian bridge described in definition

4.4, and σ is defined by equation 4.1 and the mixing conditions in [103].

Remark 4.7 (False Detection Probability and Threshold) From prop-

osition 4.6, it follows that the threshold C for the test in proposition 4.5 and

the false detection probability Pfa of the test are related by

Pfa = lim
N→∞

P

(
max

j

√
N |YN(j, δ)| > C

)
=

= P

(
sup

t
|WO

t | > C/σ

)
= 1− FKS(C/σ)

(4.5)

or C = σF−1
KS(1 − Pfa)/

√
N , where FKS is the Kolmogorov-Smirnov distri-

bution and N is the length of the test sequence.

The test in proposition 4.5 can therefore be calibrated by adjusting the pa-

rameters Pfa and δ (in equation 4.4). It is shown in [17] that a value of

δ = 0 minimizes the probability of false tranquility, i.e. ignoring an existing

change point, and that δ = 1 minimizes the probability of false detection,

i.e. identifying a nonexistent change-point. A value of δ = 0.5 guarantees

minimum estimation error for the location of a change-point. The parameter

Pfa determines the sensitivity of the test since it defines the threshold. A

low value of Pfa, i.e. 0.01, will detect only very significant changes in the

sequence {X(j)}N
j=1, while a higher value of Pfa, i.e. 0.1, will make the test

more sensitive.
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4.2.3 Description of Algorithm

The detection technique described in [18] and [73] consists of three stages,

also detailed here. Given a time-series {X(j)}N
j=1 and a sensitivity defined

by Pfa (a default value is 0.1), estimation of change-points is as follows.

Algorithm 4.8 (Stage 1: Preliminary Estimation)

1. Compute threshold C for the given Pfa and σ = 1 using remark 4.7

2. Compute the statistic |YN(j, 1)| and set j1 = arg maxj |YN(j, 1)|.
3. Split {X(j)}N

j=1 into two sequences, Z1(j) = X(j): 1 ≤ j ≤ j1, and
Z2(j) = X(j): j1 < j ≤ N . Form the sequence {Z(j)}N

j=1 defined by

Z(j) =

{
Z1(j)− µ1 for j ≤ j1

Z2(j)− µ2 for j > j1

where µ1 is the mean of Z1 and µ2 is the mean of Z2. Set σ̂ = std(Z)

4. If |YN(j1, 1)| ≤ Cσ̂/
√

N , the homogeneity hypothesis is accepted, and
the procedure is completed. If |YN(j1, 1)| ≥ Cσ̂/

√
N , j1 is designated

as a candidate change-point, and the procedure continues with step 5

5. Repeat steps 1 to 4 for both Z1 and Z2 until the homogeneity hypothesis
is accepted for all sub-segments.

6. Stage 1 will output an ordered set {jk}K1
k=1 of K1 candidate change-points

Algorithm 4.8 can be implemented rapidly using recursion.

Algorithm 4.9 (Stage 2: Rejection of Doubtful Change-Points)

Given an ordered set of candidate change-points {jk}K1
k=1,

1. Separate {X(j)}N
j=1 into K1 sub-samples Xk as follows:

X1 = X(j) : 1 ≤ j ≤ j1 + (n2 − n1)/2
Xk = X(j) : jk−1 + (jk − jk−1)/2 ≤ j ≤ jk + (jk+1 − jk)/2,

for 2 ≤ k ≤ K1 − 1
XK1 = X(j) : jK1−1 + (jK1 − jK1−1 ≤ j ≤ N
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2. Perform the homogeneity test for each sub-segment analogous to steps 1
to 4 in algorithm 4.8 using a lower false alarm probability, i.e. Pfa/10,
and δ = 0. If the homogeneity hypothesis is accepted for Xk, then jk is
removed from the set of candidate change-points.

3. Stage 2 will output an revised set {jk}K2
k=1 of K2 ≤ K1 candidate change-

points

Algorithm 4.10 (Stage 3: Final Estimation of Change-Points)

1. Separate {X(j)}N
j=1 into K2 sub-samples Xk as in step 1 of algorithm

4.9 using the revised set of candidate change-points {jk}K2
k=1

2. For each sample Xk, compute |YN(j, 1/2)|, and set
j∗k = arg maxj |YN(j, 1/2)| as the final estimate of the location of the
kth change point

3. Stage 3 will output the final set {j∗k}K
k=1 of K = K2 locations of change-

points in the sequence {X(j)}N
j=1

4. The estimate {f̂(j)}N
j=1 of the function f(·) that generates {X(j)}N

j=1

can be estimated by generating the sub-samples

X1 = X(j) : 1 ≤ j ≤ j∗1
Xk = X(j) : j∗k−1 ≤ j ≤ j∗k for 2 ≤ k ≤ K − 1
XK = X(j) : j∗K−1 ≤ j ≤ N

and computing

f̂(j) =





X̄1 for 1 ≤ j ≤ j∗1
X̄k for j∗k−1 ≤ j ≤ j∗k
X̄K for j∗K−1 ≤ j ≤ j∗k

(4.6)

where X̄k is the arithmetic mean of Xk.

The results of algorithms 4.8 through 4.10 optimally estimate the solution to

the change-point detection problem as formulated in definitions 4.2 and 4.3.

This entire procedure has been combined and implemented in MATLAB, as

part of this work, to rapidly detect change points in i.i.d. piecewise sequences.

Algorithm 4.8 is implemented using recursion, so that computational time
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for the procedure is not an issue. A simple illustration of the output for a

piecewise stationary signal is shown in figure 4.1.

100 200 300 400 500 600 700 800

−2

0

2

4

6
Random Sequence, Detected Transitions, and Piece−Wise Mean

Figure 4.1: Example of Change-Point Detection: Random Sequence, Piece-
wise Mean, and Change-Points (red stars)

This algorithm is quite powerful, because it can detect subtle transitions

that may not be evident visually but are still statistically significant, as shown

in figure 4.2.

50 100 150 200 250 300 350 400 450 500

−2

0

2

Random Sequence, Detected Transitions, and Piece−Wise Mean

Figure 4.2: Example of Change-Point Detection in Subtle Case: Random
Sequence, Piecewise Mean, and Change-Points (red stars)

In addition, changes in distribution can be detected by finding changes in

the mean of a diagnostic sequence obtained by squaring the centered signal.
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Random Sequence and Detected Transitions

Figure 4.3: Example of Change-Point Detection in Distribution: Random
Sequence and Change-Points (lines)

4.3 Segmentation and Clustering

This section reviews the methodology for separating physiological signals into

epochs in which observable properties remain invariant, which is referred to as

segmentation. This is done by feature extraction and change-point detection.

Also, the procedure of grouping invariant segments into groups belonging to

the same state, referred to as clustering, is examined.

4.3.1 Feature Extraction and Segmentation

An effective way to examine the variation of a feature for a time-series is to

partition the time series into sub-segments and evaluate that feature for each

sub-segment. This process is called feature extraction, or the creation of a

diagnostic sequence. An important first step is selection of the size of the

sub-segments, a rather subjective choice that based on several criteria. First,

evaluation of the feature examined must be meaningful for that amount of

data. Second, the variability of the feature for segments of that size within

a given state are not so great as to confound the identification of transitions.
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Third, changes on that temporal scale are relevant for the application.

For example, clinical examination of the EEG is conducted on the scale

of minutes, and a state can be defined by a clinical examiner with relative

certainty for 30-120 seconds depending on the application. Thus, for the

problem of sleep-state identification a practical sub-segment length is 30-60

seconds.

The next step is the extraction of diagnostic sequences.

Algorithm 4.11 (Extraction of Diagnostic Sequences) Consider a fea-

ture G(·) that is defined by some mapping of a vector {xj}n
j=1 to a scalar g,

i.e. G : {xj}n
j=1 7→ g. Given a time-series {X(j)}N

j=1 sampled at a frequency

fs, a diagnostic sequence with period Tg for a given feature is obtained:

1. Define the sub-sequence length by L = fsTg

2. Define a sequence of sub-sequences Xi, i = 1, 2, . . . ,M , by

Xi(j) := X(j + L(i− 1)), 1 ≤ j ≤ L

where M = bN/Lc is the length of the diagnostic sequence

3. Extract the feature for each sub-sequence by gi = G({Xi(j)}L
j=1) to

obtain a diagnostic sequence {gi}M
i=1

The same procedure can be done for a family of features, and a diagnostic

sequence can be formed in turn from some function of those features.

The problem of segmentation of physiological signals is, assuming that

a feature is stationary within a given state, to separate the signal into seg-

ments for which the given feature is stationary. Once a feature G(·) that

can discriminate among states in the sequence is found, i.e. by testing for

statistical significance between features extracted from data in known states,
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the process is straightforward. Algorithm 4.11 is used to create a diagnostic

sequence {gi}M
i=1, which is in turn processed by algorithms 4.8 to 4.10 to de-

tect change-points. The change-points in the diagnostic sequence determine

transition points in the original data. The results of the procedure should be

verified visually to determine if meaningful segmentation has been achieved,

i.e. that detected transitions correspond to changes in clinical state.

4.3.2 Clustering and State Identification

If meaningful segmentation is achieved for a data set, the invariant segments

of the data can then be separated into groups corresponding to observed

states Sj. This can be done by a clustering or partitioning algorithm applied

to the piecewise constant sequence {f̂(j)}M
j=1 extracted from the diagnostic

sequence {gi}M
i=1 after change-point detection, in the sense of definitions 4.2

and 4.3. Consider the K-means clustering algorithm:

Algorithm 4.12 (K-means Clustering) A set of N data points {xi}N
i=1

can be clustered into K disjoint subsets Sj containing Nj data points by min-

imizing the sum-of-squares criterion

J =
K∑

j=1

∑
i∈Sj

|xi − µj|2

where µj is the geometric centroid of the data points in Sj. Starting with

a random assignment of the data points to K sets, the centroid for each set

is computed, and every point is re-assigned to the cluster whose centroid is
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closest to that point. This is repeated until there is no further change in the

assignment of data points.

The K-means algorithm does not in general achieve a global or even local

minimum of J over the assignments, however it is rapid and easily imple-

mentable. A version of the algorithm is given in [57], which is implemented

in MATLAB as kmeans.m [88].

Clustering algorithms will yield far more consistent results for the ex-

tracted piecewise sequence f̂ than for the diagnostic sequence {gi}M
i=1 for any

feature, by construction. Within a given invariant segment the diagnostic se-

quence will likely be variable, and may even take values that are in the range

observed in other states. The sequence f̂ is by definition constant within an

invariant segment, so that values of the points f̂i in the same state Sj will be

less variable, and thus closer to the centroid µj. This leads to the following

procedure for identification problems in physiology.

Algorithm 4.13 (State Identification) Consider a system with K known

states Sk, for which a feature G(·) extracted from sub-segments of some

observed time-series {X(j)}N
j=1 exhibits statistically significant differences

among the K states. Assume {X(j)}N
j=1 is sampled with frequency fs and

the feature G(·) is meaningful for periods of length Tg time units. Then the

invariant epochs and corresponding states can be identified by the following

procedure, known as state identification.

1. Use algorithm 4.11 to create a diagnostic sequence {gi}M
i=1 of the feature

G(·) for sub-segments {Xi(j)}L
j=1, with L = fsTg
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2. Use algorithms 4.8 to 4.10 to detect change-points in {gi}M
i=1 and create

a piecewise-constant sequence {f̂i}M
i=1 of means of {gi}M

i=1 within the
invariant segments

3. Apply algorithm 4.12 to partition {f̂i}M
i=1 into K groups corresponding

to states Sk, to produce a sequence of state identifications {ŝi}M
i=1 cor-

responding to each sub-segment {Xi(j)}L
j=1, where si is an integer and

si ∈ [1, K]

4. If the elements of a subsequence {ŝi}b
i=a, a < b, are of the same value

k ∈ [1, K], then the sub-sequence {X̃}r
j=1 of the original time-series

given by

X̃(j) = X(j + (a− 1)L), 1 ≤ j ≤ (b− a + 1)L

corresponds to system state Sk

5. It follows that the system is in the state Sk for the time period
t ∈ [(a− 1)Tg, bTg], measured from the start of observation.

The procedure in algorithm 4.11 can also be done for a set of features

{Gk(·)}K
k=1 and a set of diagnostic sequences {gk

i }M
i=1, for k = 1, 2, . . . , K.

These sequences are then processed in step 2 separately, and in step 3 together

as a set of vector coordinates.

4.4 Discussion and Future Work

The procedure detailed in algorithm 4.13 provides a powerful tool for au-

tomatically making decisions about the state of a system for which states

are well-defined. The methodology creates a framework for automatic ap-

plication of the feature extraction methods described in chapters 2 and 3.

This will be applied in chapter 6 for automatic sleep-state identification in

neonates. Furthermore, the change-point detection algorithm presented in
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section 4.2 can be applied to a wide variety of a-posteriori detection prob-

lems, and extended to the multi-dimensional case.

In addition to state identification, the procedure in algorithm 4.13 can

be applied with little modification to determine what states are present in a

system, in the case that they are not observable qualitatively. This procedure

is called state discovery. Further investigation of non-parametric statistical

methods for change-detection, decision, and a-priori prediction methods is

warranted. Application to other areas of science and engineering surely exist,

for example in traffic modeling, process control, array signal processing, and

pattern recognition.
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Chapter 5

Analysis of EEG Structure

A fundamental issue in EEG analysis that has remained unresolved concerns

the nature of electrical activity in the brain. Specifically, the matter in ques-

tion is whether EEG signals reflect a stochastic or a deterministic process.

A great deal of literature has been devoted to examining the properties of

the EEG for both academic and clinical purposes. Much work has also been

done concurrently to develop models intended to produce signals structured

similarly to the EEG. A review of the literature is given in chapter 1, though

it represents a small sampling of the large body of work done in this field.

Despite all of the investigation into the properties of the EEG, there is no

consensus regarding a comprehensive theory explaining its nature. The issue

is whether stochastic or deterministic components are dominant in the EEG.

It remains a matter of ongoing research. The aim in this chapter is to attempt

to solve that fundamental question. The results are due to examination

of newly obtained 1000 Hz measurements directly from the surface of the

cortex of human patients. The findings clarify questions about the nature
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of the signal, which in turn guides the development of appropriate analysis

techniques for specific clinical applications.

5.1 Introduction

The models for the EEG that have been presented previously are derived

from very different branches of mathematics and the physical sciences. Some

models, such as that in [99], are based on the theories of neural fields and

pattern and wave formation. This theory centers on an analytical approach

used to examine, in a probabilistic sense, the electrical fields produced given

certain spatial and temporal distributions and correlations in neuronal firing

rates. Recent models use a deterministic dynamical system [60] or Kalman

filtering [48] to simulate the EEG. Other models, such as that of [92], are

based on ideas from statistical physics, with the assumption that the EEG

is a stochastic process.

Fundamental analysis of properties of the EEG on short time-scales was

done in [36] and [130], with the conclusions that a hypothesis of normality and

stationarity on short intervals cannot be rejected. The analysis was done in

each case using scalp measurements at low sample rates, and the conclusions

are not applicable over time ranges greater than a few seconds. In the last

decade, some investigation has been done on the clinical applicability in

EEG analysis of nonlinear time-series methods, for example [114, 115]. The

presence of nonlinear dynamics in the EEG has also been examined in [136]

and [100]. In both cases, the authors concluded that their findings were not
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consistent with the hypothesis of low-dimensional nonlinear chaos.

In his work, Palǔs [100] concludes that a theory combining deterministic

oscillations with a stochastic process may be the best explanation for the

structure of the EEG signal. The use of measures based on dynamical sys-

tems theory is somewhat criticized, and models based on nonlinear stochastic

processes are suggested. Furthermore, Palǔs strongly advises that a study

of the EEG should include an analysis using linear methods and hypothesis

tests using surrogate data to demonstrate the relevance and necessity of any

nonlinear methods used to quantify the phenomena being examined.

The investigation in this chapter is very much in agreement with the sug-

gestions of Palǔs. The focus is on making qualitative conclusions about the

structure of the data, not clinical findings. The first step is a standard linear

statistical analysis of the data, which is extended to include an examination

of memory, stationarity, distributional, and scaling properties of the signal.

Next a hypothesis test is conducted to test for determinism, decide whether

any nonlinear analysis is necessary or beneficial, and conclude which analysis

may be relevant. Finally, an explanation for the behavior of the EEG signal,

that is consistent with the theories of self-organized systems and neuronal

networks, is presented, and future work is discussed.

5.2 Data Sets and Assumptions

The data used for investigation includes a set of 46 intra-cranial 98-channel

EEG recordings sampled at 1000 Hz from a study of 8 epileptic patients.
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These recordings are of measurements from electrodes directly on the cor-

tex of the patient. Another set used consists of 116 14-channel sleep-EEG

recordings sampled at 64 Hz from a study of neonatal development. These

recordings are measured from electrodes on the scalp. The data were pro-

vided by Dr. Mark Scher of the Department of Pediatrics and Dr. Mary Ann

Werz of the Department of Neurology at the Case School of Medicine.

The 98-channel data is filtered using a 200 Hz low-pass filter. Grids of

electrodes in meshes are implanted directly onto the cortex of the patient by

a neurosurgeon in normal and pathological areas.
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Figure 5.1: Epoch of Cortical EEG Data, 5 Second Interval
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The 14-channel data is filtered using an anti-aliasing 32 Hz low-pass filter

and a 60 Hz notch filter, and the electrodes are arranged in the international

10-20 system, shown in figure 5.2.
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Figure 5.2: International 10-20 Electrode System (Image obtained from
http://www.sfar.org/sfar actu/ca97/html/ca97 002/97 02-3.gif)
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Figure 5.3: Epoch of Neonatal Scalp EEG Data, 30 Second Interval
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Note that the cortical data contains a great deal of information that is

very difficult to interpret visually. The scalp data is sampled at a much lower

rate and contains fewer channels, but is still difficult to assess. A practical

way to interpret the data in a format that is more readily viewed is to examine

a set of diagnostic sequences. Once a feature is related to a clinical state or

event, viewing a diagnostic sequence is a more practical way to understand

the behavior of EEG records over time.

The assumptions are as follows. First, the EEG is the measurement of a

collection of continuous processes, i.e. the electrical potential between pairs

of locations on the cortex or scalp, sampled at some frequency fs. Because the

change in electrical potential on the scale in question is a continuous process,

the digital EEG recording approximates a smooth, continuous signal for a

sufficiently high sample rate. It is clear that for a high enough sample rate on

some small interval, any continuous signal will appear deterministic, and for

a large, arbitrary sample rate, a deterministic signal may appear random. It

follows that analysis must be done on the data after re-sampling at a relevant

time scale, and if the sampling rate is too low, analysis that requires a high

rate must be foregone.

It is unlikely that a healthy individual would volunteer for unnecessary

brain surgery, so it is evident that EEG recordings measured directly from

the cortex can only be obtained for pathological cases. Thus an analysis of

the structure of a normal cortical EEG cannot be undertaken in the strict

sense. To overcome this obstacle, the EEG of pathological subjects is as-
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sumed “normal” in the absence of clinically observed pathological activity.

That is, the EEG of an epileptic patient resembles normal EEG activity in

the absence of a seizure, and will be subsequently referred to as normal. A

more precise classification is “non-ictal”, referring to the absence of seizure

activity.

A final assumption is that the electrical potentials measured from the

scalp are significantly distorted with respect to the subtle electrical activity

measurable from the cortex. It is assumed that the 1000 Hz cortical data,

albeit from pathological subjects, best reflects the structure of the EEG, and

the results are verifiable using scalp EEG data.

5.3 Linear Statistical Analysis

A great deal of established clinical precedent exists for visual identification

of various behaviors in the EEG. These behaviors are referred to as wave

morphology, and include evaluation of spatial distribution, reactivity, vari-

ous rhythms and frequencies, spikes, cyclic alternating patterns, and evoked

potentials. Such visual analysis is not discussed here. Automatic computer

analysis in this field has been largely limited to time-frequency analysis, heav-

ily dependent on the Fast Fourier Transform. An excellent review by Lopes

da Silva of the traditional theory and clinical practice is given in chapter

61 of [94]. In this section the linear statistical properties of the EEG are

examined, using methods including time-frequency analysis.
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5.3.1 Correlation and Power Spectrum

Local and long-range correlations are examined using the methods in section

3.1, as well as the distribution of power in the frequency spectrum. The local

(t ∈ [0, 1] seconds) a.c.f. of normal cortical EEG data is shown in figure 5.4.

It is computed using 10 seconds (10000 samples) for each channel.
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Figure 5.4: Local (1 sec.) Autocorrelation of Cortical EEG Data: Channel
30 (top) and All channels (bottom)

The bottom plot in figure 5.4 is a convenient way to display the value

of a large family of functions. The domain is time, the range is the set of

channels, and the color of the plot represents magnitude as indicated in the

color bar at right. The channels numbered 50 and greater are contaminated

by measurement noise due to equipment error, which was not removed by

filtering. The long-range (t ∈ [1, 10] seconds) a.c.f. is shown in figure 5.5. It

is computed using 30 seconds (30000 samples) for each channel.
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Figure 5.5: Local (10 sec.) Autocorrelation of Cortical EEG Data: Channel
30 (top) and All channels (bottom)

The local a.c.f. of the EEG is a highly variable property, as shown in

figure 5.6. 10 second epochs are used to approximate the a.c.f. every 2

seconds. The domain is time, the range is the delay, and the color is a.c.f.

value.
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Figure 5.6: Change in Autocorrelation of Cortical EEG Data

The same variability is evident in the neonatal data, for which the same

analysis is shown in 5.7 using 10 second segments to estimate the a.c.f. for

each second.
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Figure 5.7: Change in Autocorrelation of Neonatal Scalp EEG Data

The periodogram estimate of the spectral density for 10 seconds of cortical

EEG data is shown in figure 5.8. Note the spike at 60 Hz in channels 50 and

greater, which is due to electrical interference during data collection.
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Figure 5.8: Log of Power Spectrum of Cortical EEG

Figure 5.9 shows the log of the power spectrum, estimated every 2 seconds

using a 30 second epoch, over a period of 400 seconds.
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Figure 5.9: Log of Power Spectrum of Cortical EEG over Time
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The power spectrum estimate varies dynamically, just as the a.c.f., be-

cause the two are directly related. The power is concentrated in the lower

frequencies (f < 30 Hz). It is important to note that the spectral density

can vary greatly depending on the clinical state of the patient, i.e. various

sleep states, conscious activities, and pathological conditions.

5.3.2 Long Memory and Non-Stationarity

The presence of long memory has been verified in EEG recordings for various

states. In [81], a.c.f.s of very long epochs of band-filtered EEG are examined.

Notable scaling properties are observed in different frequency bands, and

statistically significant correlations are found at delays of up to 200 seconds

for certain frequencies.

Such an analysis is not undertaken here. It suffices to examine the a.c.f.

of one channel of a long (100 second) epoch of cortical EEG data (figure 5.10)

to see that the signal has long memory properties.
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Figure 5.10: Autocorrelation of Large Epoch of Cortical EEG Data

The long memory property can be verified quantitatively by applying

the self-affinity measures described in section 3.2. The Hurst parameter
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H is approximated by estimating the fractal dimension D and computing

H = 2−D (call this the FD method), and also by applying the DFA method.

This is done for 30 50-second epochs of seizure-free cortical EEG data and for

30 100-second epochs of neonatal scalp EEG data. Box-plots of the measures

are shown for both groups in figure 5.11.
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Figure 5.11: Self-Affinity Estimators for Cortex and Scalp EEG Data

Recall that the Hurst parameter, with permissible values H ∈ [0, 1], is

near 1 for high self-similarity, and near 0 for low self-similarity. Similar

behavior on various scales indicates the presence of long memory. The results

support the hypothesis that the EEG is a long memory process, since both

the DFA and FD results are close to 1 for the cortical data. Their means and

standard deviations are 0.946 ± 0.136 and 0.900 ± 0.028, respectively. The

DFA of the scalp data samples has a standard deviation of 0.37, and is not

significant, while the FD measure remains a consistent estimator, with mean

and standard deviation of 0.633±0.086. The latter is closer to 0.5, indicating

low memory. This suggests that subtle long-memory processes are reflected
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in cortical measurements that are not present in scalp measurements. These

conclusions are consistent with the paradigm of brain activity as a complex

self-organized network, where long-memory and hierarchical self-similarity

are inherent.

One property that the EEG lacks is stationarity, as shown in figure 5.12.

The signal is non-stationary in mean, variance, and as seen in section 5.3.1,

correlation and spectral power characteristics as well.
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Figure 5.12: 15 Second Cortical EEG epoch (line) and 2-Second Moving
Average (dots)

Non-stationarity renders certain measures difficult to quantify, for exam-

ple the Hurst parameter, and is the reason for the high variability in DFA.

The analysis of long-range dependence in the presence of non-stationarity

is addressed in [131]. However, the performance of estimators based on the

variogram appear to resolve this issue to some extent, and are far less com-

putationally intensive. Furthermore, the non-stationarity may be a regular

feature of the EEG, indicating multi-scaling of self-similarity properties. This
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conjecture is supported by the high power in the low-frequency band.

5.3.3 Distribution of Signal and Increments

When considering a stochastic process as a model for real data, important

properties to examine are the distributions of the signal and of increments in

the signal. The term “increments” here refers to a change in amplitude for

a given temporal difference. The fundamental work of testing for normality

and stationarity in the amplitude of EEG signals has been done by Elul [36]

and Sugimoto [130]. They concluded that short, 2-second, epochs of the EEG

are Gaussian and stationary. Over longer epochs the distribution of the EEG

is irregular and highly variable, so little further investigation has been done

in that direction.

The hypothesis examined in this section is that, because the EEG is

the measurement of a complex self-organizing system, its increments are dis-

tributed with, approximately, an α-stable distribution. The tails of the actual

distribution will be truncated because the EEG is bounded. The amplitude

distribution of the EEG is not expected to be α-stable, because the functions

of the brain are not completely random. Also, since the EEG is a continuous

process, the amplitude cannot jump instantaneously.

The increments of the signal should be close to SαS (symmetric α-stable).

This assumption is due to the fact that cortical measurements reflect the

number of neurons firing near the electrode site at any given time. The

electrical potential at a site on the cortex is thus a sum of a large and random
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number of random variables reflecting local potentials in small groups of

neurons, which are in turn sums of potentials in single neurons, which are

also random. This assumption relates well to the paradigm of brain activity

as interactions within a complex self-organized network.

Using the estimation methods in chapter 2, the parameters of the α-stable

distribution are fitted to a 40 second (40000 point) epoch of cortical EEG

data, and 625 seconds (40000 points) of scalp EEG data. The Kolmogorov-

Smirnov density estimate, α-stable fit and parameters, and Gaussian fit are

shown in figure 5.13.

−500 0 500
0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3Distribution of Scalp EEG and α−stable fit

α = 1.9633,  σ = 81.6337,  β = −0.028289

 

 
KS
αs
norm

−150 −100 −50 0 50 100 150
0

0.002

0.004

0.006

0.008

0.01

Distribution of Cortex EEG and α−stable fit

α = 1.9902,  σ = 29.3394,  β = −0.31137

 

 
KS
αs
norm

Figure 5.13: Distribution of EEG Amplitude and α-stable fit: Scalp (left)
and Cortex (right)

The α-stable fits are only slightly better by visual inspection than the

Gaussian fit, and do not pass goodness-of-fit (g.o.f.) tests as described in

section 2.1.8 at a 5% significance level. The empirical density estimate ap-

pears almost triangular, and the results are similar for longer epochs.

Now, the increments of the same data used in figure 5.13 are fitted to the

α-stable distribution. The time step used for computing differences is the
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first minimum or zero-crossing of the a.c.f. for an epoch, so that the data are

as linearly uncorrelated as possible (see section 3.3.1). The time step used is

0.027 seconds (27 points) for the cortical data, and 0.422 seconds (27 points)

for the scalp data. The a.c.f.s for the epochs are shown in figure 5.14.
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Figure 5.14: Autocorrelation of Cortex (dots) and Scalp (stars) EEG Data

The first minimum of the a.c.f. for the EEG measured from the cortex is

marked, as well as the first zero-crossing of the a.c.f. for the scalp EEG.
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Figure 5.15: Distribution of EEG Increments and α-stable fit: Scalp (left)
and Cortex (right)

Upon visual inspection, the α-stable distribution is a good fit for the

distribution of increments in the cortical EEG, and is considerably different
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from the normal fit, since α = 1.8. That fit also passes the Kolmogorov-

Smirnov and Anderson-Darling g.o.f. tests at a 5% significance level. The

fit for the scalp EEG, however does not, which is surprising because the

autocorrelation appears more comparable to that of a random process than

that of the cortical EEG. It is nevertheless a good model in that case as well.

The 0.027-second increments of 45 non-overlapping, 50-second, seizure-

free epochs of cortical EEG data from 4 patients are fitted with α-stable

distributions, and each passes g.o.f. tests successfully at a 5% significance

level. Box-plots of the estimates of α and σ are shown in figure 5.16.
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Figure 5.16: α-Stable Parameter Estimates for EEG Increments: α (left) and
σ (right)

Note that the shape parameter α is 1.896, which is considerably different

from the Gaussian case (α = 2). It can be concluded with confidence that

the increments of the cortical EEG are α-stable with truncated tails. This

leads to the conjecture that α-stable impulsive noise could play a significant

role in the generation of neuronal activity.
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5.3.4 Self-Similarity Properties

The scaling properties of the EEG were briefly discussed in section 5.3.2.

The high values of the DFA and fractal dimension estimators of the Hurst

parameter indicated high self-similarity, and thus long memory. This section

examines whether the EEG is indeed locally self-similar by examining the

scaling of the distribution of increments for increasing steps in time. Specifi-

cally, the change in the scale parameter σ of the α-stable parameter estimate

can be examined.

Consider a stochastic process X(t) that is self-similar with stationary,

symmetric, α-stable increments (recall definition 2.22). That is, the incre-

ments ∆X(h) , (X(t + h) − X(t)) satisfy ∆X(h)
d
= Sα(σ0, 0, 0). Such a

process also has the property ∆X(nh)
d
= n1/α∆X(h), as follows.

∆X(nh) = X(t + nh)−X(t)
=

∑n
i=1(X(t + ih)−X(t + (i− 1)h))

d
=

∑n
i=1 ∆Xi(h)

d
= n1/α∆X(h)

(5.1)

where ∆Xi(h)
d
= ∆X(h) are i.i.d., and the last step is due to corollary 2.7.

The increments ∆X(h) are H-sssi with self-similarity index H = 1/α.

It was shown in section 5.3.3 that the cortical EEG has α-stable incre-

ments for time-steps of about 0.027 seconds. The following analysis inves-

tigates the scaling properties of the EEG signals over small time-intervals,

and examines whether a 20-second epoch of cortical EEG is locally H-sssi.

The scale parameter σ, as estimated by algorithm 2.18, is shown for time
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increments from 0.001 to 0.1 seconds. In addition, the same analysis is done

for an H-sssi process simulated by cumulative summation of a sequence of α-

stable random numbers with the same shape parameter α ≈ 1.9 as the EEG

data. The relationship expected for the H-sssi model, σ/σ0 = n1/α, due to

equation 5.1, is shown for comparison. The same result is also displayed on

a logarithmic scale, for which the relationship between the time increment

and scale should be linear, along with a regression fit. The results are given

in figure 5.17.
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Figure 5.17: Scale parameter σ of Cortex EEG Increments and Simulation
with Time Step (top) and on log scale (bottom)

It is evident that the scaling of the EEG increments as measured from

the Cortex does not follow a power law. For small time increments the
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scaling is actually linear, which indicates a value of H = 1, however the

self-similarity index decreases quickly to H = 0, since the signal is bounded.

Therefore one may conclude that the H-sssi model is not appropriate for the

EEG locally or globally. The change in the index H leads to the conjecture

that a nonlinear law governs the local behavior of the EEG, and that the

nonlinearity is stochastic, because as shown in section 5.3.3, the distribution

of increments is α-stable. Scaling properties are also examined in the scalp

EEG of neonates, and the results are shown in figure 5.18.
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Figure 5.18: Scale parameter σ of Scalp EEG Increments and Simulation
with Time Step (top) and on log scale (bottom)

From these results it follows that the EEG is not strictly self-similar.

However, the self-affinity may be present in other observable features, as

107



suggested in [81].

5.4 The Nonlinearity Question

In this section an attempt is made to examine the fundamental question

of the presence and nature of nonlinearity in the EEG in the framework of

hypothesis testing. In literature related to electrical bio-physiology, “nonlin-

earity” is often used in the context of modeling the behavior of a process as

a deterministic, low-dimensional nonlinear dynamical system. Theiler [136]

examined the justification for this model to represent the EEG without con-

clusive results, and suggests that the paradigm of a dynamical system is too

narrow to explain its behavior. It is difficult to demonstrate the relevance

and necessity of nonlinear measures for real data. Theiler suggests that non-

linear measures may not be informative even when used to examine relative

differences or changes.

The question of whether measures of nonlinear deterministic signal prop-

erties are relevant in EEG analysis can be investigated by testing whether

nonlinear determinism is present in the EEG. The method presented in sec-

tion 3.4.1 was shown to be very sensitive to the presence of any determin-

ism in a signal. The surrogate data test for determinism using the central

tendency measure (CTM) is applied to the same 45 epochs of EEG that

were used in section 5.3.3 to examine the distribution of increments. An

embedding dimension of m = 7 is used, and the time-delay τ is the first

zero-crossing or minimum of the autocorrelation, which is computed auto-
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matically for each segment. Both the student t-test and empirical criterion

SCTM = CTMsurr/CTMorig are used for the test. Box-plots of the criterion

SCTM for the cortex and scalp EEG epochs are shown in figure 5.19.
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Figure 5.19: Box-plots of Empirical CTM Criterion for EEG Data (left) and
CTM values (right); cortex (left) and scalp (right) for each plot

The null hypothesis H0 that there is no determinism is rejected in only

15% of the cases for cortex data and 18% of the cases for scalp data. That is,

in 85% of cortical EEG epochs examined, the hypothesis that the signal was

produced randomly could not be rejected. This is evidence that the normal

EEG is in general stochastic.
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The CTM technique, like the correlation dimension, is also sensitive to

random noise in unknown ways. To support the above results, the mutual

information for EEG data and corresponding surrogates is compared in figure

5.20. Even in the case where determinism cannot be rejected using the

surrogate data test with the CTM, the mutual information for the EEG data

is not very different from that of surrogate data. This is shown for all the

EEG epochs examined by computing SMI = MIEEG(τ)/MIsurr(τ) for delay

values τ ∈ [0.001, 0.2]. The distribution of these values is shown in figure

5.21.
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Figure 5.21: Box-plots: Ratio of Mutual Information of EEG to that of
Surrogates

The results show that the mutual information of the EEG data and the

surrogate data is similar in the majority of cases for all delay values. This is

strong additional evidence that any given epoch of the EEG is generated by

a random process, and not simply the output of a deterministic dynamical

system.

An analysis of nonlinearity in EEG recordings was done using alternate
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methods in [113], focusing on discerning low-dimenisonal nonlinear determin-

ism from non-stationarity, and similar results were obtained.

5.5 A Model for the Normal EEG

Various models have been developed for generating signals similar to the

electrical activity of the brain, as referenced in 5.1. The emphasis in these

works is on reproducing the background rhythms, rather than on evoked

potentials and more complex processes. An alternative model for the same

process is presented in this section, using the results of the investigations in

this chapter.

It was established in section 5.3.1 that activity of the EEG falls primarily

in the low-frequencies, but that the spectrum is highly variable with time.

In section 5.3.2, it was shown that the EEG has long memory and is a non-

stationary process. In section 5.3.3, it was demonstrated that the increments

of the EEG are from the α-stable distribution, and fit the model of impulsive

noise. In section 5.3.4, it was shown that the EEG increments have complex

scaling properties that do not fit the power-law model. Finally, the hypothesis

that there is very little determinism present in the EEG is given strong

support in section 5.4, suggesting that the best model is a stochastic process.

The model presented below is based on the filtered linear fractional stable

noise (LFSN) stochastic process described in section 2.2.2. Recall that in this

process, impulsive α-stable shot noise is passed through two linear filters, first

a kernel composed of a difference of power laws, and second a moving average
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filter to remove discretization errors. The EEG and filtered LFSN share the

properties listed above. The properties of EEG epochs and simulated filtered

LFSN processes are compared in the next section.

5.5.1 Normal EEG as Fractional Stable Noise

Recall the compound linear fractional stable noise (CLFSN) in definition

2.26. A realization of the symmetric balanced CLFSN process (a = b = 1)

with H1 = 0.2 and H2 = 2/α − H1 = 0.911 is generated for time T = 200

seconds using the parameters α = 1.8, σ = 1, memory N = 1000, time

discretization n = 0.02. It is re-scaled in time and plotted with a 10-second

epoch of normal EEG measured from the cortex in figure 5.22. Both are

normalized and centered, and the signal details are plotted as well.
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(left)

The autocorrelation and mutual information of the two signals are very
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similar locally, though the CLFSN in this example has greater long-range

correlation. They are compared in figure 5.23.
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Figure 5.23: Autocorrelation (left), Mutual Information (center), and Power
Spectral Density (right) of cortex EEG and CLFSN

The shape parameter α of the distribution of increments on different

time scales is compared for the EEG and CLFSN in figure 5.24. The shape

parameter of increments the CLFSN and EEG vary on different time scales,

and the increments of the EEG are normally distributed (α = 2) on some

scales.
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Figure 5.24: Shape Parameter α of Increment Distribution for EEG and
CLFSN

The scaling of the two signals on increasing time-scales is compared by

examining the scale parameter σ of the distribution of increments. This is
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shown in figure 5.25. The fractal dimension is 1.061 ± 0.01 for the EEG

sampled at 1000 Hz and 1.131± 0.02 for the CLFSN.
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CLFSN

The LFSN shares several important properties with the EEG, specifically

that the increments are α-stable. Also, the autocorrelation, mutual infor-

mation, and scaling properties are very similar on small time-scales, and

comparable on larger scales. The LFSN is suggested as a good model for

normal EEG activity.

5.5.2 Self-Organization Theory of Neuronal Activity

The idea that the electrical activity of the brain is the manifestation of a

self-organized network of single neurons dates back to the work of Norbert

Wiener [143]. Wiener pioneered the use of power spectrum estimation in

electrophysiology and further suggested that nonlinear phenomena play a

large role in the functions of the brain and nervous system.

The advances in nonlinear theory and computer power in the past decades

has made the examination of such phenomena in the EEG possible. The
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EEG fluctuates in amplitude and frequency, but the nature of these oscilla-

tions remains unclear. Another feature is the spontaneous synchronization

of oscillations in EEG signals, which has been observed during sleep [45],

and in an extreme form is the symptom of epileptiform activity [83]. It is

suggested that such spontaneous synchronization of neuronal activity may be

correlated [81] over long time-scales. The authors of that report also suggest

that the theory of self-organized criticality [7, 8] may be an explanation for

this phenomenon.

The theory of self-organized criticality explains the evolution of complex

systems through local interactions, in space and time, towards so-called crit-

ical state. The apparently spontaneous emergence of these states is in fact

correlated over long time-scales. The state is termed ‘critical’ because, al-

though very sensitive to small changes, the system reaches an equilibrium

at that state. The qualitative concept of criticality provides a conceptual

connection between the notions of nonlinear dynamics, spatial self-similarity,

and α-stable noise, which have been observed in complex physical systems.

A quantitative basis for this connection is presented in [8].

The theory of self-organized criticality was proposed for the EEG in [81],

and some scaling properties were examined to support this hypothesis. The

distributional analysis in this chapter supports that hypothesis as well, and

the fractional stable noise model reflects the properties of the phenomenon

of criticality.

The notion of spontaneous self-organization can be used to understand
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applied problems in EEG analysis. The emergence of pathological states can

be considered as the result of a spontaneous departure from a normal, critical

state. This paradigm can be used to explain the phenomenon of epilepsy,

and possibly other pathologies.

5.6 Discussion and Future Work

In this chapter the structure of the EEG signal was examined. The linear

statistical properties of autocorrelation and power spectrum were investi-

gated for some example EEG epochs, as well as their temporal variability.

The amplitude distribution of the EEG was found to be irregular, while the

distribution of increments was found to be α-stable. Goodness-of-fit tests

verified this model in every case. The EEG was found to have long memory

and self-similarity properties. The presence of nonlinearity was investigated,

and the hypothesis that low-dimensional nonlinear determinism is present in

the EEG signal was found to be questionable and unlikely. A new type of

fractional stable noise process, the filtered compound LFSN, was suggested as

a model for the EEG, with which its properties were found to be comparable,

notably the distribution of increments, scaling, and non-stationarity. It is the

first EEG model to use α-stable noise, and is supported by its connection to

the theory of self-organized criticality.

Future work in analysis of the properties of the EEG may be founded

qualitatively on the theory of self-organized criticality. Further testing for

the presence of nonlinear phenomena is suggested, specifically in long-range
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temporal correlations, and the emergence of spontaneous synchronized os-

cillations. Any model for the EEG must be validated by testing whether

its increments satisfy the α-stable model. The fractional stable noise model

should be investigated further, and parameter estimation techniques devel-

oped to calibrate the model. Applied problems in EEG analysis should be

connected with proper qualitative categorization of the phenomena in ques-

tion and computational methods to quantify their presence or emergence.
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Chapter 6

Automatic Sleep-State

Identification in Neonates

The problem of sleep-state identification has been examined in detail for

adults, and known results are described in [94]. Sleep cycles are well devel-

oped in adults, and can be identified effectively by clinicians and to some

extent by power spectrum analysis. The sleep dynamics of neonates are sub-

stantially more complex, because they are in the process of development and

maturation. It follows that certain information about the neural maturity of

a neonate can be inferred given the level of maturation of its sleep cycle, as

suggested in [119].

Information about sleep cycles depends on the definition and identifica-

tion of various clinical sleep states. For adults, defined states are rapid eye

movement (REM), slow-wave sleep (SWS), and two types of non-REM sleep

(NREM1 and NREM2). These states are defined and identified in practice

from polysomnographic (PSG) recordings by clinical experts, among whom

there can be substantial variability for the same record. A study was con-
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ducted [29] to quantify this variability by using 196 recordings and indepen-

dent sleep-state scorings from two European sleep laboratories. The authors

gave the agreement between the scores of two clinicians in identifying sleep

states as 78.4% for REM, 71.6% for SWS, 63.3% for NREM2, and 40.3%

for NREM1. Because the sleep-cycle of the neonate is in development, it is

unlikely that agreement would be any better in this case. The defined states

for mature neonates are two active states: mixed frequency (MF) and low-

voltage irregular (LVI); and two quiet sleep states: high voltage slow (HVS)

and tracé alternant (TA). When scoring PSG records, clinicians also specify

awake, transitional, and indeterminate states.

In order to consistently quantify brain maturation or identify pathology

using the temporal characteristics of sleep cycles, a consistent scoring tech-

nique must be developed. Automatic sleep-state detection from the EEG

by computational methods was proposed in [128] for this purpose, and more

modern approaches are proposed in [121]. Any automatic methods must be

compared to existing clinical practices, described in [32].

In this chapter, a novel algorithm, to appear in a similar form in [108], is

presented for sleep state identification in neonates based on the methods in

[18, 73]. The techniques of feature extraction, segmentation and clustering

described in section 4.3 are applied to neonatal PSG recordings. The features

used are chosen based on applicability and robustness, and the method is ver-

ified by measuring the agreement of the resulting scores with those provided

by Dr. Mark Scher of the Case School of Medicine.
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6.1 Initial Feature Selection

The choice of features can be conducted empirically, or by testing statistical

significance as in [43] using analysis of variance (ANOVA). Feature extraction

involves the processing of many short epochs of EEG data, so simple, rapid,

and robust measures are desired. The measures chosen for analysis in the

neonate sleep-EEG application are band power (BP), Hjorth parameters of

mobility (HM) and complexity (HC), spectral entropy (SE), fractal dimen-

sion (FD, by the variogram method), and central tendency (CTM). These

measures are analyzed for significance in distinguishing sleep states visually

and by ANOVA.

The measures are applied to all one-minute epochs of EEG data from the

MF, LVI, HVS, and TA states as identified by a clinician for 19 full-term

neonates. Box-plots of these measures are shown for epochs of the center

channel, Cz-Pz in the international 10-20 system, in figure 6.1, and box-plots

of power in low-frequency bands are shown in figure 6.2.

The box-and-whisker plots (box-plots) in figures 6.1 and 6.2 are used to

visualize the distribution of each feature in each state, and are interpreted as

follows. The box is the domain of the middle two quartiles of the data, and

the line that divides it is the median estimate. The notches on the median

line indicate a 90% confidence interval for the median. The whiskers give

the domain of the upper and lower quartiles, and the plus marks indicate

outliers.
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Figure 6.1: Box-Plots of EEG Measures for Neonatal Sleep States, Center
Channel (Cz-Pz), Left to Right: Standard Deviation, Fractal Dimension,
Central Tendency Measure, Spectral Entropy

It can be seen in figure 6.1 that the confidence intervals of the medians

are distinguishable for all of the features, even the standard deviation, so

each feature is statistically significant. However, this has limited utility in

clinical applications because very short segments, or even single points, of the

diagnostic sequence must be classified as belonging to a given state. ANOVA,

which tests for differences in distribution, is not effective in identifying useful

features. A more robust empirical criterion is to select features for which

distributions in distinct states have limited overlap in their distributions.
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Figure 6.2: BBox-Plots of Band Power for Neonatal Sleep States, Center
Channel (Cz-Pz): 0-1 Hz, 1-2 Hz, 2-3 Hz, and 3-5 Hz

Every feature examined has significant overlap in distribution within the

quiet sleep states, HVS and TA, and within the active sleep states, LVI and

MF. All the features except standard deviation are significantly different be-

tween active and quiet sleep, however. Therefore these features can be used

to distinguish active and quiet sleep, but not necessarily between the sub-

states within them. Table 6.1 lists the features and their difference for active

sleep compared to quiet sleep, in addition to p-values and F-statistics for

one-way analysis of variance (ANOVA). The p-values for ANOVA should be

122



Feature active ⇒ quiet p-value F-statistic

SD standard deviation N/A 0.0121 3.64
FD fractal dimension higher 0 2141.88
CTM central tendency meas. higher 0 1734.95
SE spectral entropy lower 0 1296.44
BP1 0-1 Hz Power higher 0 2900.92
BP2 1-2 Hz Power lower 0 3136.38
BP3 2-3 Hz Power lower 0 2919.94
BP4 3-5 Hz Power lower 0 1813.53
HM Hjorth mobility N/A 3.5× 10−11 17.23
HC Hjorth complexity N/A 0.0198 3.29

Table 6.1: Features for Neonatal Sleep-State Detection

zero for a significant feature, and the F-statistic can be used to choose a

preliminary set of the most useful features. The features selected are fractal

dimension (FD), central tendency measure (CTM), spectral entropy (SE),

0-1 Hz band power (BP1), and 1-2 Hz band power (BP2). The Hjörth pa-

rameters and standard deviation are not included, as they provide no usable

information. Also, the frequency bands above 2 Hz are not included because

they provide redundant information. The subsequent analysis is limited to

separating active and quiet sleep.

6.2 Sleep State Scoring Procedure

The automatic sleep-state scoring procedure is implemented following the

framework given in algorithm 4.13 for automatic state identification. The

features FD, CTM, SE, BP1, and BP2 are used to create diagnostic sequences

from each channel of each scored EEG recording with 1-minute epochs, anal-

ogous to the minute-by-minute clinical score provided.
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Figure 6.3: Neonatal Sleep-State Identification Procedure: FD Diagnostic
Sequence (top), Change-Point Detection (center), and Clustering (bottom)

In the change-point detection step, a high false alarm probability Pfa =

0.3 is used, because the aim of segmenting the diagnostic sequence is a piece-

wise ‘smoothing’ that makes the clustering algorithm more efficient and ro-

bust. The procedure is illustrated in figure 6.3 for the FD feature for two

neonates with well-developed sleep cycles, and the clinical score is shown for

comparison.
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6.3 Calibration of Algorithm

The aim of automatic sleep-state detection is to achieve the same result in

discriminating active and quiet sleep as a clinician. After automatic scor-

ing using the selected features is accomplished, the resulting score must be

compared to the clinical score, and the results used to both calibrate and

then also validate the algorithm. Calibration is accomplished by selecting

the channel or channels and combination of features for which a measure of

agreement is greatest. In addition to % agreement, the authors of [29] use

Cohen’s Kappa [23], which is a statistic that measures the agreement be-

tween scorers or raters. Cohen’s Kappa is widely used because it takes into

account the probability that agreement is due to chance.

Definition 6.1 (Cohen’s Kappa) Cohen’s Kappa is defined as

κ =
P (a)− P (e)

1− P (e)
(6.1)

where P (a) is the relative observed agreement among raters and P (e) is the

probability that the agreement is due to chance. Consider two scores {Ai}N
i=1

and {Bi}N
i=1 that can take values in {Sj}K

j=1. Then P (a) is given by

P (a) =
1

N

K∑
j=1

N∑
i=1

(I{Ai = Bi} · I{Ai = Sj}) (6.2)

and P (e) is given by

P (e) =
1

N2

K∑
j=1

[(
N∑

i=1

I{Ai = Sj}
)
·
(

N∑
i=1

I{Bi = Sj}
)]

(6.3)
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where I{·} is the indicator function, given by

I{expression} =

{
1 if expression = true
0 if expression = false

(6.4)

The sleep-state detection algorithm is applied to 19 full-term and 16 pre-term

neonates 15 times for each channel. Because the randomly seeded K-means

clustering algorithm is used, the algorithm does not always converge to the

same final result, so the average performance is of interest. Cohen’s Kappa

is computed for agreement between the algorithm and epochs identified as

active or quiet in the clinical score, for all the runs on each channel.
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Box-plots of the distribution of Kappa and % agreement are shown in

figure 6.4. The best agreement for the full-term group was obtained for

channel 6, which is the potential measured between the locations C3 and O1

in the international 10-20 convention (see section 5.2). This is the potential

across the left parietal lobe. The value of Cohen’s Kappa is κ = 0.66 (84%

agreement) for the full-term group, and κ = 0.53 (77% agreement) for the

pre-term group. This is consistent or better than the inter-scorer variability

for adults reported in [29].

Next, Cohen’s Kappa and % agreement is computed for the scores pro-

duced using several combinations of available features.
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The Combinations are {FD, CTM, SE, BP1, BP2}, {FD}, {BP1}, {FD,

BP1}, {FD, CTM, SE, BP1, BP2, BP3, BP4, BP5}, and {FD, SE, BP1, BP2,

BP3}, and the distribution of agreement for each combination is shown in

figure 6.5. The values of Cohen’s Kappa using fractal dimension (FD) are κ =

0.70 (86% agreement) for the full-term group and κ = 0.60 (81% agreement)

for the pre-term group. These values are κ = 0.73 (87% agreement) for the

full-term group and κ = 0.68 (85% agreement if the worst-case outlier is

removed. These values of Kappa and agreement are better than the inter-

scorer agreement reported in [29].

6.4 Quantification of Brain Maturation

It is suggested in [119] that the neural development of neonates can be as-

sessed using sleep measures. A simple feature that can be used to quantify

the temporal patterns of a sleep sleep cycle is the number of transitions be-

tween the active to the quiet sleep states observed per hour of sleep. This

feature can be used to compare the sleep cycles of two groups.
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Figure 6.6 shows this comparison for the full-term and pre-term neonate

groups. An ANOVA for the sleep-cycle transition rate using a maturity

factor with full-term and pre-term values results in a p-value of 0.0135 and

F-statistic of 6.89. The full-term group had on average 2.3 state transitions

per hour and the preterm group had on average 1.4 state transitions per

hour. There is clearly a difference in distributions for the two groups, but

it is questionable whether a predictive model can be constructed from these

results. Further examination on additional data sets is necessary before a

model can be developed. Other features that quantify the differences between

sleep cycles may be more informative.

6.5 Discussion and Future Work

In this chapter the state identification methodology introduced in chapter 4

was applied to develop an algorithm for sleep-state identification in neonates.

The selection of significant features and implementation of the algorithm is

discussed. The calibration of the procedure to best match the clinical scores

is done using Cohen’s Kappa for measuring agreement between scores. The

highest agreement was found using the fractal dimension of potentials across

the left parietal lobe. The agreement of the automatic scoring algorithm

with the clinical score for this case is on average as good or better than

the agreement between independent human clinical scores reported in the

literature.

The results of this algorithm can be applied to automatically reconstruct
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the sleep-cycles of neonates from their EEG using only one channel of mea-

surement. The regularity of sleep-cycles can be used to assess brain maturity

of neonates in a clinical setting. Epochs of the EEG without state transi-

tions can be investigated to search for other significant properties. Other

more sensitive features can be examined in order to discriminate between all

four clinical neonatal sleep states. The methodology used can also be applied

to other problems involving complex systems.
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Chapter 7

Automatic Epileptic Seizure

Onset Detection

Epilepsy is a serious brain disorder that affects 1% of the population, and it

is estimated that over 50 million have the disease worldwide. The manifesta-

tions of this disease include seizures, which are characterized by synchronous

neuronal firing. Such events can have cognitive, sensory, and motor symp-

toms that can vary greatly in type and severity, and can also result in serious

brain injury. A comprehensive review of the modern medical knowledge and

clinical practice in the area of epilepsy is contained in [37].

Over the past decade interest has grown in the use of computational

methods to detect and potentially forecast the onset of epileptic seizures

using EEG recordings. A review of the state of the art is given in [63],

and the growth in the number of publications in this field is commented on

in [28]. Many works have appeared recently that propose methods for the

detection of epileptic seizures, and some suggest that the onset of seizures

can be predicted. A review of these is given in section 7.1.
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This chapter examines the phenomenon of epilepsy and the results are

used to suggest which measures may best be used to discriminate seizure ac-

tivity from the normal EEG. Measures that best reflect the phenomenological

change in the nature of the signal are used as onset criteria in an algorithm

that realizes rapid seizure detection, and the possibility of forecasting seizure

onset is discussed as well. It is important to note that this investigation has

been conducted using rare, recently obtained clinical EEG data measured

directly from the cortex of epileptic patients at a high 1000 Hz sample rate.

This study is notable, in that previous research on epilepsy has been based

on scalp data.

7.1 Recent Computational Epilepsy Analysis

Recent work in the field of computational EEG analysis that focuses on

epilepsy approaches the problems of seizure detection, prediction, and con-

trol. A large amount of work is focused on the detection of epileptic activity

and identifying EEG signal features that change during seizure onset. All of

the works surveyed used inter-cranial EEG data measured from the scalp of

patients.

Various ways in which seizures arise are investigated in [83]. Self-organized

neural networks are used for detection in [47], and clustering algorithms for

multi-channel data are used in [75]. The fractal dimension has been observed

to change considerably during epileptic seizures [38]. Wavelet analysis is used

in [129] and also in [125] along with machine learning algorithms for detec-
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tion. System-theoretic methods are used to identify changes in the power

spectrum of the EEG that can be used to detect seizures in [126]. The effec-

tiveness of linear and nonlinear methods for detecting seizures are compared

in [90], and the SLEX method for time-frequency estimation is suggested as a

possibility in [25]. In addition, the authors of [56] suggest that the correlation

dimension is not a reliable measure of epileptiform activity.

Several research groups have developed methods claimed to predict the

onset of seizures. In [62], the authors observed that the largest Lyapunov

exponents of short epochs of the EEG gradually decreased in critical regions

of the brain leading up to a seizure. The forecasting algorithm that they

present evaluates the ‘entrainment’ between ‘critical’ electrode sites by com-

paring largest Lyapunov exponents for signals measured at those sites. That

work is based on the observation that the largest Lyapunov exponents of the

EEG decrease gradually leading up to seizure onset [64].

A genetic feature selection heuristic is used in [28] for early seizure onset

detection. The primary features used include estimators of fractal dimension,

spectral energy, entropy, and wavelet packets, as well as secondary features

obtained by arithmetic and statistical operations applied to the primary fea-

tures. A wavelet-based entropy measure is also used as a feature in [101]. A

measure of complexity of the EEG is investigated in [68] for use in seizure

onset detection. Complexity is found to decrease gradually leading up to a

seizure, and then to drop markedly just before clinical onset.

All of the reviewed prediction methods are patient-specific, in that they
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require EEG recordings that contain seizures to calibrate the thresholds for

the required decision structures.

7.2 Quantification of Epileptiform Activity

The aims of much of the work discussed in section 7.1 can be separated into

two distinct but related goals. The first goal, called feature identification,

is to discover features of the signal, such as complexity or power spectrum,

that change significantly at, or leading up to, seizure onset (referred to as

the ictal state). The second goal, called decision structure development, is

to construct algorithmic measures that quantify changes in those features

in single or multiple channel EEG recordings and make decisions about the

onset of a seizure. Works such as [28] combine the above goals by selecting

features based on the performance of a decision structure for a given data

set.

The investigation here is restricted to feature identification, with the goal

of selecting a signal feature for which some measure can be rapidly computed

to quantify epileptiform activity. A consensus has been reached throughout

the literature [63] that such activity is characterized by synchronization of

neuronal firing. The scope of such synchrony in the brain is related directly

to the severity of the seizure.

Convincing evidence has been presented for the presence a low-dimensional

nonlinear dynamics in the EEG during epileptic seizures [6, 64]. Conse-

quently, the features that have been proposed to quantify ictal activity are
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dimension and chaos, measured by the correlation dimension and largest Lya-

punov exponents, respectively. The paradigm of a low-dimensional nonlinear

dynamical system is too narrow to describe the EEG, as shown in [136], [100]

and in chapter 5 of this work.

Recall that it was shown in chapter 5 that the hypothesis that determinis-

tic nonlinear dynamics are present in the normal EEG is questionable, and it

was suggested that the normal EEG is best modeled as a stochastic process.

It then follows that epileptiform activity can be related to a change in the

qualitative nature of the EEG from a stochastic process to a low-dimensional

deterministic nonlinear system. At seizure onset, a region of the brain spon-

taneously re-organizes its functions from complex asynchronous activity that

is similar to fractional stable noise to a simpler, synchronized firing that has

a structure similar to a low-dimensional nonlinear system. This hypothesis

is justified conceptually by the fact that the action potential of a neuron is

a nonlinear deterministic process [1], as is the electrical activity of neurons

firing in concert.

To validate this hypothesis quantitatively, the test for determinism from

section 3.4.1 can be applied to ictal EEG epochs. EEG recordings from 5

patients containing 11 seizures are examined. The surrogate data test for

determinism using the CTM is performed on 6 consecutive 10-second (10000

point) EEG epochs beginning at clinical onset for each seizure. A channel

with significant ictal activity is chosen in each case. Recall that the null

hypothesis of the test is that the signal is stochastic. For 83% of the epochs
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the null hypothesis is rejected, meaning that the signal is deterministic in

those cases. Box-plots of the empirical SCTM measure and the CTM are

shown in figure 7.1. The CTM of non-ictal epochs from figure 5.19 is included

for comparison.
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Figure 7.1: Boxplots of Empirical S-measure (left) and CTM (center) for
Ictal EEG Epochs and CTM for Non-Ictal Epochs (right)

These results verify the hypothesis that the ictal EEG is most likely a

deterministic signal. Furthermore, there is an average difference of an order

of magnitude between the CTM of the ictal and non-ictal EEG. It follows

that the CTM itself can be used as a feature to identify ictal activity. The

fractal dimension (FD), a rapidly computable measure, has also been found

to identify ictal activity [38]. That measure quantifies the ‘smoothness’ of a

time-series, so its use can also be justified qualitatively. To illustrate the use

of CTM and FD to identify seizure activity, diagnostic sequences for both

measures are computed for all channels of several EEG epochs containing

seizures. 5-second epochs are used, and time-delay embedding is performed

using tau = 0.03 and m = 7. The results of two channels with marked seizure

activity are shown in figure 7.2 for patient 1.
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Figure 7.2: CTM (top) and FD (bottom) Measures During Seizures

The transformed measures 1/CTM and 1/(FD−1), for which changes are

most significant, are shown. The changes in both the CTM and FD features

are very clearly visible at the same time as clinical onset. Furthermore,

changes in the features are visible during the time leading up to the second

seizure.

The decrease in fractal dimension and increase in determinism leading up

to seizure onset is similar to that of the observations of the largest Lyapunov

exponents [62] and signal complexity [68], which is the basis for forecasting

algorithms presented in the literature. All of these factors point to a gradual

increase in the synchronization of neuronal activity throughout the brain

before electrographic seizure onset.

Strong evidence was presented to support the hypothesis that the nor-

mal state of the EEG is random. It is possible that anomalous neuronal
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synchronization begins to occur spontaneously in pathological regions of the

brain, which in turn triggers control mechanisms that attempt to stabilize

the resulting oscillations. This would explain the ‘spikes’ in the CTM and

FD during the inter-ictal period in figure 7.2. It is also possible that eventu-

ally the feedback mechanism over-compensates and begins to contribute to

the pathological entrained oscillations, resulting in the spread of ictal activ-

ity throughout the brain. The ictal state then lasts until the neurons have

exhausted their stored energy and are no longer able to fire synchronously.

Thereafter the neurons self-organize to resume normal ‘autonomous’ activity.
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Figure 7.3: CTM (top) and FD (bottom) Measures During Seizures
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The localization of ictal activity in the brain can be determined by viewing

diagnostic sequences for all channels at once, as shown in 7.3. The red areas

in the upper plot of the CTM indicate the channels corresponding to the most

pathological regions of the brain. Similar results were observed in other EEG

recordings containing seizures. Therefore seizure identification and detection

simply require checking whether the CTM or FD measures have increased

past an easily-calibrated non-patient-specific threshold for any given channel.

7.3 Clinical Applications and Early Seizure

Onset Detection

As noted in section 7.1, several methods for early detection, or prediction,

of seizure onset using the scalp EEG have been proposed. In order to imple-

ment and test such a technique using the features suggested in section 7.2, a

decision structure must be developed. One such example is the “T-statistic”

described in [62].

The requirements for a decision structure are to identify critical electrode

sites, quantify the probability of onset at an given time using a-priori in-

formation, forecast the time until onset if it is likely, and positively identify

onset if it occurs. All of this should be accomplished while minimizing the use

of patient-specific information or any training sets, in order to be adaptable

for application in clinical trials.

Furthermore, for an early seizure onset detection algorithm to be clinically

applicable, the feature extraction and decision process must be simple enough

139



to operate in real-time. The fractal dimension and the central tendency

measure are well-suited for this purpose because they change consistently in

the presence of ictal activity and do not require parametric analysis. Their

computation is also very rapid, with CTM and FD requiring about .015

and .005 seconds, respectively, on a 3 GHz machine for 5000 points. A

simplified nonparametric decision structure similar to the “T-statistic” could

be implemented using these features to achieve the objectives mentioned

above. Such a framework would be efficient enough to process data from

several channels in an embedded microprocessor.

In the case of severe epileptic patients, grids of electrodes are surgically

implanted directly onto the cortex for the purpose of diagnosis. The objec-

tive of this procedure is to identify the most pathological area of the brain

for surgical resection. This can be greatly aided by the use of diagnostic

sequences created by computational feature extraction, such as figure 7.3.

For the two seizures that occur during that epoch, the CTM has the great-

est magnitude in the most pathological areas, as indicated by an epilepsy

specialist who worked with the patient.

7.4 Discussion and Future Work

The qualitative changes that occur in the EEG signal during seizure onset

were discussed using the results of previous work and new results from chap-

ter 5. The spontaneous synchronization of neuronal activity was used to

explain the onset of epilepsy. Synchronization between individual neurons
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cannot be measured, and synchronization between EEG channels cannot be

attributed to that phenomenon. However, signal features that reflect syn-

chronization, such as fractal dimension and measures of determinism, can be

used to identify epileptiform activity. Such measures, whose relevance can

be explained qualitatively and demonstrated quantitatively by hypothesis

testing, are better suited to robust algorithm development that minimizes

parametrization requirements.

In order to implement the features suggested here, an efficient decision

structure that requires little computation time should be developed to work

in conjunction with feature estimation algorithms. Using a decision structure

with few parameters and a simple design, a real-time seizure onset detection

and forecasting device can be designed. Using such a device, researchers

could enter the next phase in epilepsy research, discovering electrical signals

with which pathological areas of the brain can be stimulated to prevent or

counteract ictal activity.
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Chapter 8

Conclusions and
Recommendations for Future
Work

This thesis develops several non-standard mathematical and algorithmic ap-

proaches for modeling and analysis of the human EEG. Because the behavior

of the EEG cannot be explained by any single narrow mathematical model,

especially in pathological cases, multiple time-series analysis methodologies

are used, and the literature in each area is reviewed. The notions of sta-

ble stochastic processes, nonlinear deterministic dynamical systems, random

fractals, and self-organizing networks are used to create a unifying model

for EEG behavior using statistical tests for hypothesis validation. This ap-

proach is found to be useful in investigating epilepsy. In addition, a state-

identification methodology is developed and applied to the neonatal EEG

sleep-state identification problem. The methods and applications presented

in the thesis are reviewed in detail in sections 8.1 and 8.2, and suggestions

for future work are included. The integration of very diverse mathematical
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concepts to more completely characterize complex systems such as the EEG

is novel, and many directions for future work can be found.

8.1 Methods

8.1.1 Stable and Fractional Processes

A computational toolbox is developed for data analysis and modeling using

α-stable distributions. Novel parameter estimation and goodness-of-fit test-

ing algorithms are developed. Self-similar, stable, and fractional stochastic

processes are examined. The compound linear fractional stable noise, which

combines correlation structures on two separate time scales, is introduced.

Additional work is necessary to compare the parameter estimation algo-

rithm to other recent algorithms, and to develop more efficient estimation

methods. Stable and fractional stochastic processes should be investigated

further, focusing on simulation methods, discovering new types of processes,

and modeling physical phenomena.

8.1.2 Nonlinear Time-Series Analysis

Various methods for time-series analysis are explored. Standard methods

for processing of linear stochastic signals are reviewed. Methods for fractal

time-series analysis are compared, and nonlinear time-series methods based

on phase-space reconstruction are reviewed. The types of signals are rigor-

ously classified, i.e. deterministic or stochastic and linear or nonlinear, using

hypothesis testing with surrogate data.
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Further investigation of methods for estimating the fractal properties of

objects of dimension greater than n = 2 is warranted. Also, existing phase-

space based methods for nonlinear time-series analysis should be applied to

different types of signals to determine what properties they quantify, and

how they can be modified to remain invariant with respect to other proper-

ties. The evaluation of most phase-space based measures is computationally

intensive, therefore new, more efficient methods to use time-delay embedding

to extract useful information should be developed.

8.1.3 Segmentation and Clustering

A rapid a-posteriori change point detection algorithm based on the Brownian

bridge process is implemented to detect statistically significant transitions in

random sequences. The process of feature extraction to create diagnostic

sequences from time-series data is reviewed. An algorithm for state iden-

tification problems using diagnostic sequences is presented. Pre-processing

of diagnostic sequences by change-point detection and smoothing is used to

make the decision structure based on K-means clustering more robust.

Change-point detection is a problem that arises in many engineering ap-

plications. Novel ways to apply the algorithm in signal processing appli-

cations may be found, and it can be adapted to problems in more than

one dimension. In addition, the “smoothing” effect of the algorithm can be

combined with intelligent clustering methods to develop more robust state-

identification algorithms.
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8.2 Applications

8.2.1 EEG Analysis and Modeling

An investigation was conducted into the general structure of the normal EEG

signal. Most notably, the increments of the EEG were found to be a good

fit to an α-stable distribution. Furthermore, the notion of low-dimensional

deterministic nonlinear dynamics in the normal EEG was found to be ques-

tionable. An alternate model, based on a linear stochastic process with long-

range correlated α-stable increments, was proposed, and was shown to share

many important properties with the EEG signal. In addition, this model is

in agreement with the theory of self-organized criticality, which was recently

proposed to explain EEG activity. Because the α-stable distribution is the

result of a limiting sum of random variables, it is an intuitive model for EEG

activity, which is the result of the combined electrical potentials of billions

of nerve cells.

It is suggested that any model for the EEG should result in an α-stable

distribution of the increments. Models that combine nonlinear and stochastic

components should be investigated, because explaining EEG activity appears

to require such a combination.

8.2.2 Sleep-State Detection

The state identification methodology described in chapter 4 was used to

develop an automatic algorithm to identify sleep-states in neonates from the

EEG. This algorithm can be viewed as an automatic sleep-scoring technique
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that extracts the sleep-cycle from the EEG, identifying transitions between

active and quiet sleep. The number of transitions per hour are found to be

related to the maturity of the neonate. This is in accord with clinical findings

relating the regularity of the sleep-cycle to brain maturation in neonates.

These results are based on an investigation of 35 EEG recordings out of

the 116 in the NIH study for which clinical scores were available. The analy-

sis should be applied to the other EEG recordings to test whether differences

in the number of state transitions per hour between full-term and pre-term

populations are consistent with the findings. The number of state transitions

per hour, and other simple measures of maturity derived from the automatic

sleep-cycle score, can be used to develop a predictive statistical model that

can be tested for clinical relevance. Additional data from EEG studies us-

ing higher sample-rates can be used to verify the results and increase the

predictive specificity of the model.

8.2.3 Epileptic Seizure Detection

The phenomenon of seizure onset was investigated using EEG recordings

measured directly from the cortex of severe epileptic patients. The EEG sig-

nal was found to change qualitatively from a predominantly linear stochastic

signal to a nonlinear deterministic signal during seizure onset. The central

tendency measure, used to quantify determinism, was applied to 5-second

epochs of the EEG recordings and shown to clearly identify the onset of

epileptic seizures. Furthermore, the CTM was greatest in magnitude in the
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most pathological areas of the brain. In addition, the fractal dimension of

the signal was shown to have possible predictive properties. The theory of

self-organized criticality was suggested to explain seizures as the overcompen-

sation of feedback mechanisms applied by the brain to suppress epileptiform

activity.

This work focuses on discovering signal features that best identify epilep-

tiform activity. The fractal dimension and central tendency measure accom-

plish this, and are extremely simple and can be rapidly computed, compared

with published methods. The next step is to design a robust and rapid deci-

sion structure based on non-parametric statistics to quantify the likelihood

of onset of a seizure. Together with feature extraction methods, such a de-

cision structure can be used to forecast seizures and intervene to prevent or

mitigate seizures and their symptoms.
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Appendix A

List of MATLAB Codes

A.1 α-Stable Distributions

ASadtest.m Anderson-Darling test for goodness-of-fit of α-stable parame-
ters to a data vector

AScdf.m Cumulative distribution function of the α-stable distribution

ASestinit.m α-stable parameter estimation by Zolotarev’s method of log-
moments with corrections for feasibility

ASkstest.m Kolmogorov-Smirnov test for goodness-of-fit of α-stable pa-
rameters to a data vector

ASmle.m Numerical maximum likelihood estimation of α-stable parameters

ASpdf. Probability density function of the α-stable distribution

astail.m Tail probabilities of the α-stable distribution

bergstrom.m Asymptotic Bergström expansion for evaluating the proba-
bility density function for extreme domain values

CharFun.m Characteristic function of the α-stable distribution

ksdist.m Complementary Kolmogorov-Smirnov distribution

KSinverse.m Inverse of the Kolmogorov-Smirnov distribution

LLfun.m Log-likelihood objective function for Numerical MLE

randas.m Simulation of α-stable random samples by the Chambers-Mallows-
Stuck method
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A.2 Stable and Fractional Processes

clfsn.m Simulation of the compound linear fractional stable noise process

clfsnkf.m Kernel function for the compound linear fractional stable noise
process

lfsn.m Simulation of the linear fractional stable noise process

lfsnkf.m Kernel function for the linear fractional stable noise process

logfsnkf.m Kernel function for the log-fractional stable noise process

A.3 Time-Series Analysis

A.3.1 Spectral Analysis

pgram.m Spectrum estimation by the periodogram method

bandpower.m Power in a given frequency band from the periodogram

SPedge.m Spectral edge from the periodogram

Hjorth.m Hjorth’s parameters in the time domain

SPent.m Spectral entropy from the periodogram

A.3.2 Fractal Analysis

FrDim.m Fractal dimension by the variogram method

FrDimH.m Fractal dimension by the curve-length method

A.3.3 Attractor Reconstruction

MutInf.m Auto-mutual information function

NfalseNN.m The number of false nearest neighbors

Statevec.m Reconstruction of the phase-space from a time-series
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A.3.4 Phase-Space Measures

CorrInt.m Correlation integral

SlopeDet.m Detects the appropriate linear region of a log-log plot for con-
sistent estimation of the correlation dimension

KolmEnt.m Kolmogorov-Sinai entropy

CTM.m Central tendency measure

Lyap.m Largest Lyapunov exponent

A.4 Change-Point Detection

Palarm.m Detects change-points of a random sequence and returns an es-
timate of the piece-wise constant function and the transition (change-
point) locations
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2001.

[10] Barnsley, M. Fractals Everywhere. Academic Press, 1988.

[11] Berger, H. über das elektroenkephalogramm des menschen. Archiv
für Psychiatrie und Nervenkrankheiten 87 (1929), 527.

[12] Bergström, H. On some expansions of stable distributions. Arkiv
für Matematik (1952), 375–378.

[13] Billingsley, P. Convergence of Probability Measures. Wiley and
Sons, Inc., New York, 1968.

151



[14] Biscay, R., Lavielle, M., González, A., Clark, I., and
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[115] Röschke, J., Fell, K., and Mann, K. Non-linear dynamics of
alpha and theta rhythm: correlation dimensions and lyapunov expo-
nents from healthy subject’s spontaneous eeg. International Journal of
Psychophysiology 26 (1997), 251–261.

[116] Rosenstein, M., Collins, J., and De Luca, C. A practical
method for calculating largest lyapunov exponents from small data
sets. Physica D 65 (1993), 117–134.

[117] Samorodnitsky, G., and Taqqu, M. Stable non-Gaussian random
processes: stochastic models with infinite variance. Chapman & Hall,
New York, 1994.

[118] Schepers, H., van Beek, J., and Bassingthwaighte, J. Four
methods to estimate the fractal dimension from self-affine signals. IEEE
Engineering in Medicine and Biology 11 (1992), 57–64.

[119] Scher, M., Steppe, D., and Banks, D. Postnatal adaptation of
brain function in full-term neonates as assessed by eeg sleep analyses.
Sleep 18, 7 (1995), 531–535.

160



[120] Scher, M., Steppe, D., Dahl, R., Asthana, S., and Guthrie,
R. Comparison of eeg sleep measures in healthy full-term and preterm
infants at matched conceptional ages. Sleep 15, 5 (1992), 442–448.

[121] Scher, M., Turnbull, J., Loparo, K., and Johnson, M. Auto-
mated state analyses: Proposed applications to neonatal neurointensive
care. Journal of Clinical Neurophysiology 22 (2005), 256–270.

[122] Scher, M., Waisanen, H., Loparo, K., and Johnson, M. Pre-
diction of neonatal state and maturational change using dimensional
analysis. Journal of Clinical Neurophysiology 22 (2005), 159–165.

[123] Schreiber, T., and Schmitz, A. Surrogate time series. Physica
142, 3 (2000), 346.

[124] Shao, M., and Nikias, C. Signal processing with fractional lower
order moments: stable processes and their applications. Proceedings of
the IEEE 81, 7 (1993), 986–1010.

[125] Shoeb, A., Edwards, H., Connolly, J., Bourgeois, B.,
Treves, T., and Guttag, J. Patient-specific seizure onset detec-
tion. In Proceedings of the 26th Annual International Conference of
the IEEE EMBS (Sept. 2004), pp. 419–422.

[126] Sinha, A., Richoux, W., and Loparo, K. A system theoretic state
description for temporal transitions in the electroencephalogram data
of severe epileptic patients. 43rd Conference on Decision and Control
(2004).

[127] Sprott, J. Improved correlation dimension calculation. International
Journal of Bifurcation and Chaos 11, 7 (2001), 1865–1880.

[128] Stoffer, D., Scher, M., Richardson, G., Day, N., and Coble,
P. A walsh-fourier analysis of the effects of moderate maternal alcohol
consumption on neonatal sleep-state cycling. Journal of the American
Statistical Association 83, 404 (1988), 954–963.

[129] Subasi, A. Epileptic seizure detection using dynamic wavelet network.
Expert Systems with Applicaitons 29 (2005), 343–355.

[130] Sugimoto, H., Ishii, N., Iwata, A., and Suzumura, N. On the
stationarity and normality of the electroencephalographic data during
sleep stages. Computer Programs in Biomedicine 8 (1978), 224–234.

[131] Teverovsky, V., and Taqqu, M. Testing for long-range depen-
dence in the presence of shifting means or a slowly declining trend,

161



using a variance-type estimator. Journal of Time-Series Analysis 18
(1997), 279–303.

[132] Theiler, J. Spurious dimension from correlation algorithms applied
to limited time-series data. Physical Review A 34, 3 (1986), 2427–2432.

[133] Theiler, J. Efficient algorithm for estimating the correlation dimen-
sion from a set of discrete points. Physical Review A 36, 9 (1987),
4456–4462.

[134] Theiler, J. Estimating fractal dimension. Journal of the Optical
Society of America 7, 6 (1990), 1055–1073.

[135] Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and
Farmer, J. Testing for nonlinearity in time series: the method of
surrogate data. Physica D 58 (1992), 77–94.

[136] Theiler, J., and Rapp, P. Re-examination of evidence for low-
dimensional, nonlinear structure in the human electroencephalogram.
Electroencephalography and clinical Neurophysiology 98 (1996), 213–
212.

[137] Tsihrintzis, G., and Nikias, C. Fast estimation of the parameters
of alpha-stable impulsive interference. IEEE Transactions on Signal
Processing 44, 6 (1996), 1492–1503.

[138] Turnbull, J., Loparo, K., Johnson, M., and Scher, M. Au-
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